Abstract

Optical coherence tomography (OCT) has demonstrated considerable potential for a wide range of medical applications. Initial work was done in the time domain OCT (TD-OCT) approach, but recent interest has been generated with spectral domain OCT (SD-OCT) approaches. While SD-OCT offers higher data acquisition rates and no movable parts, we recently pointed out theoretical inferior aspects to its performance relative to TD-OCT. In this paper we focus on specific limitations of swept source OCT (SS-OCT), as this is the more versatile of the two SD-OCT embodiments. We present experimental evidence of reduced imaging penetration, increased low frequency noise, higher multiple scattering (which can be worsened still via aliasing), increased need to control the distance from the sample, and saturation of central bandwidth frequencies. We conclude that for scenarios where the dynamic range is relatively low (e.g., retina), the distance from the sample is relatively constant, or high acquisition rates are needed, SS-OCT has a role. However, when penetration remains important in the setting of a relatively high dynamic range, acquisition rates above video rate are not needed, or the distance to the tissue is not constant, TD-OCT may be the superior approach.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Brezinski, Optical Coherence Tomography, Principle and Practice (Academic, 2006).
  2. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
    [CrossRef]
  3. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
    [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
    [CrossRef]
  6. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604(2003).
    [CrossRef] [PubMed]
  8. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  9. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189(2003).
    [CrossRef] [PubMed]
  10. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007).
    [CrossRef]
  11. http://www.lightlabimaging.com/
  12. http://www.thorlabs.com/
  13. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
    [CrossRef] [PubMed]
  14. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
    [CrossRef] [PubMed]
  15. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
    [CrossRef]
  16. V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005).
    [CrossRef] [PubMed]
  17. S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Ann. Biomed. Eng. 32, 26-34 (2004).
    [CrossRef] [PubMed]
  18. S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
    [CrossRef] [PubMed]
  19. B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464-4479 (2006).
    [CrossRef] [PubMed]
  20. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  21. T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
    [PubMed]
  22. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
    [PubMed]
  23. R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103(2007).
    [CrossRef]
  24. P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University, 1997), pp. 614-617.
  25. H. Kin and H. W. Kim, “Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells,” Biomaterials 24, 4671-4679 (2003).
    [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  27. D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
    [CrossRef] [PubMed]
  28. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999).
    [CrossRef] [PubMed]
  29. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  30. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490(2000).
    [CrossRef]
  31. J. Zhang, J. S. Nelson, and Z. P. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  32. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
    [CrossRef]

2007

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007).
[CrossRef]

R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103(2007).
[CrossRef]

2006

2005

J. Zhang, J. S. Nelson, and Z. P. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
[PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
[CrossRef]

V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005).
[CrossRef] [PubMed]

2004

2003

2002

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

2001

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

2000

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490(2000).
[CrossRef]

1999

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999).
[CrossRef] [PubMed]

1998

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

1996

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
[CrossRef]

Andersen, P. E.

Aretz, H. T.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Bajraszewski, T.

Boppart, S. A.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604(2003).
[CrossRef] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Brezinski, M. E.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007).
[CrossRef]

B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464-4479 (2006).
[CrossRef] [PubMed]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

M. E. Brezinski, Optical Coherence Tomography, Principle and Practice (Academic, 2006).

Chen, Z. P.

Chilek, M.

Chinn, S. R.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189(2003).
[CrossRef] [PubMed]

Conwell, D.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Crane-Kruger, G. M.

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
[CrossRef]

Davros, B.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

de Boer, J. F.

Demakis, C.

Di Cesare, P. E.

S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Ann. Biomed. Eng. 32, 26-34 (2004).
[CrossRef] [PubMed]

Donchenko, E.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Drexler, W.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Dumot, J.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
[CrossRef]

Falk, G.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Feldchtein, F.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Fercher, A. F.

Frenkel, S. R.

S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Ann. Biomed. Eng. 32, 26-34 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Gelikonov, G.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Giattina, S.

Gladkova, N.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Goldblum, J.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

Halpern, E. F.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Harman, M.

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Hermann, B.

Hill, W.

P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University, 1997), pp. 614-617.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
[CrossRef]

Horowitz, P.

P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University, 1997), pp. 614-617.

Houser, S. L.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Ishaug Riley, S. L.

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

Izatt, J. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189(2003).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230-1232 (2003).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Jang, I.-K.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Jesser, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
[CrossRef]

Kang, D.-H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Kaplan, D.

V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005).
[CrossRef] [PubMed]

Karageorgiou, V.

V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005).
[CrossRef] [PubMed]

Kauffman, C. R.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Kim, H. W.

H. Kin and H. W. Kim, “Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells,” Biomaterials 24, 4671-4679 (2003).
[CrossRef]

Kin, H.

H. Kin and H. W. Kim, “Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells,” Biomaterials 24, 4671-4679 (2003).
[CrossRef]

Kowalczyk, A.

Le, T.

Leitgeb, R.

Leitgeb, R. A.

Li, X.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Lindmo, T.

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

Liu, B.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007).
[CrossRef]

B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464-4479 (2006).
[CrossRef] [PubMed]

Lodge, M. B.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Martin, S.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Mikos, A. G.

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

Milner, T. E.

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

Nelson, J. S.

J. Zhang, J. S. Nelson, and Z. P. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

Pan, K.

T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
[PubMed]

Park, B. H.

Pitris, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Pnsky, J.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Raby, S.

Ren, J.

T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
[PubMed]

Ren, T.

T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
[PubMed]

Richter, J.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Sarunic, M. V.

Saunders, K.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Schlendorf, K. H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Shishkov, M.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Smithies, D. J.

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Stamper, D.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

Stamper, D. L.

Stingl, A.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604(2003).
[CrossRef] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

Thrane, L.

Unterhuber, A.

Vargo, J.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Wang, L. V.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999).
[CrossRef] [PubMed]

Wang, R. K. K.

R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103(2007).
[CrossRef]

Wax, A.

Wojtkowski, M.

Yabushita, H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

Yang, C. H.

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999).
[CrossRef] [PubMed]

Yaszemski, M. J.

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

Yun, S. H.

Yura, H. T.

Zagaynova, E.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Zhang, J.

Zhongping, C.

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

Zuccaro, G.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Am. J. Gastroenetrol.

G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001).
[CrossRef]

Ann. Biomed. Eng.

S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Ann. Biomed. Eng. 32, 26-34 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103(2007).
[CrossRef]

Biomaterials

V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005).
[CrossRef] [PubMed]

H. Kin and H. W. Kim, “Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells,” Biomaterials 24, 4671-4679 (2003).
[CrossRef]

S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998).
[CrossRef] [PubMed]

Circulation

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

J Biomed Mater Res A

T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005).
[PubMed]

J Biomed. Opt.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005).
[CrossRef]

J. Biomedical Optics

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007).
[CrossRef]

J. Gastroenterol.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Rheumatol.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999).
[CrossRef] [PubMed]

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other

M. E. Brezinski, Optical Coherence Tomography, Principle and Practice (Academic, 2006).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University, 1997), pp. 614-617.

http://www.lightlabimaging.com/

http://www.thorlabs.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of both TD-OCT and SS-OCT are shown. Images courtesy of [1].

Fig. 2
Fig. 2

2D images are shown of the scaffolding imaged with TD-OCT (left) and SS-OCT systems (right).

Fig. 3
Fig. 3

Scanning electron microscopy micrographs of the porous structure of PLGA scaffolding. The pore size ranges from 100 to 250 μm .

Fig. 4
Fig. 4

Still frames of the 3D projection of PLGA scaffolding using TD-OCT (left) and SS-OCT (right).

Fig. 5
Fig. 5

(a) SS-OCT imaging with the focus on the surface of a bovine meniscus. The bovine meniscus has a smooth surface and discrete banding pattern from birefringence. The arrows identify the tissue surface. (b) When the focus has been moved 1 mm below the surface, the image becomes completely distorted by the inverted image of the surface (complex conjugate ambiguity).

Fig. 6
Fig. 6

This figure demonstrates low frequency noise that is not removed in the detection electronics because SS-OCT is a low pass system. Postprocessing to reduce this noise is required, which degrades the image by removing the low frequency components of the autocorrelation function.

Fig. 7
Fig. 7

A demonstration that, if the central frequencies of the swept radiation are above the threshold of the detector (i.e., the center frequencies are removed), the FFT is only performed on the frequencies well below and above the center, as can be seen in the figure. This FFT of the remaining two peaks, if their width is sufficiently small, produces a sinusoidal like pattern.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

decibels = 10 log x .
decibels = 20 log x .
C = f b f + b ,

Metrics