Abstract

A practical scheme for a tunable multiwavelength Raman fiber ring laser based on a single fiber Bragg grating with a voltage-controllable coil heater is investigated. The number of phase-shifted regions within a single fiber grating determines the number of reflection peaks and the number of lasing wavelengths in the multiwavelength Raman fiber ring laser. A stable multiwavelength Raman fiber ring laser with low output peak-power fluctuation of less than 0.5dB at room temperature is achieved. A multiwavelength Raman fiber ring laser with a high extinction ratio of more than 50dB is realized. High flatness is obtained for three lasing peaks, and the lasing peak-power difference is measured to be less than 0.2dB. A voltage-controllable coil heater with heating elements is used to effectively control three lasing wavelengths in the multiwavelength output, and the tunability of each lasing wavelength is measured to be 0.11nm/V.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
    [CrossRef]
  2. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multi-frequency erbium-doped fibre laser anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825-831 (2001).
    [CrossRef]
  3. H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30, 619-621 (2005).
    [CrossRef]
  4. G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).
  5. D. Wei, T. Li, Y. Zhao, and S. Jian, “Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings,” Opt. Lett. 25, 1150-1152 (2000).
    [CrossRef]
  6. S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, “Switchable multiwavelength ytterbium-doped double-clad fiber laser based on a multimode fiber grating,” Appl. Opt. 46, 3579-3582 (2007).
    [CrossRef]
  7. J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).
  8. Y. G. Han, D. S. Moon, Y. Chung, and S. B. Lee, “Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method,” Opt. Express 13, 6330-6335 (2005).
    [CrossRef]
  9. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
    [CrossRef]
  10. Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
    [CrossRef]
  11. F. Bakhti and P. Sansonetti, “Wide bandwidth, low loss and highly rejective doubly phase-shifted UV-written fibre bandpass filter,” Electron. Lett. 32, 581-582 (1996).
    [CrossRef]
  12. C. S. Kim, R. M. Sova, and Jin. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun. 218, 291-295 (2003).
    [CrossRef]
  13. J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
    [CrossRef]
  14. Y. G. Han, S. B. Lee, C. S. Kim, Jin. U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,” Opt. Express 11, 476-481 (2003).
  15. J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
    [CrossRef]

2007 (3)

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).

S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, “Switchable multiwavelength ytterbium-doped double-clad fiber laser based on a multimode fiber grating,” Appl. Opt. 46, 3579-3582 (2007).
[CrossRef]

2006 (1)

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

2005 (2)

2004 (1)

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

2003 (3)

C. S. Kim, R. M. Sova, and Jin. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Y. G. Han, S. B. Lee, C. S. Kim, Jin. U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,” Opt. Express 11, 476-481 (2003).

2001 (1)

2000 (2)

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

D. Wei, T. Li, Y. Zhao, and S. Jian, “Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings,” Opt. Lett. 25, 1150-1152 (2000).
[CrossRef]

1996 (2)

F. Bakhti and P. Sansonetti, “Wide bandwidth, low loss and highly rejective doubly phase-shifted UV-written fibre bandpass filter,” Electron. Lett. 32, 581-582 (1996).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

Andrés, M. V.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

Bakhti, F.

F. Bakhti and P. Sansonetti, “Wide bandwidth, low loss and highly rejective doubly phase-shifted UV-written fibre bandpass filter,” Electron. Lett. 32, 581-582 (1996).
[CrossRef]

Bellemare, A.

Cai, Z.

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

Chen, H.

Chen, X.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Chung, Y.

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

Y. G. Han, D. S. Moon, Y. Chung, and S. B. Lee, “Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method,” Opt. Express 13, 6330-6335 (2005).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Y. G. Han, S. B. Lee, C. S. Kim, Jin. U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,” Opt. Express 11, 476-481 (2003).

Cruz, J. L.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Díez, A.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

Dong, X.

Fu, S.

Guo, Z.

Han, Y. G.

Jian, S.

Kang, J. U.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Kang, Jin. U.

Karasek, M.

Kim, C. S.

C. S. Kim, R. M. Sova, and Jin. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Y. G. Han, S. B. Lee, C. S. Kim, Jin. U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,” Opt. Express 11, 476-481 (2003).

LaRochelle, S.

Lee, S. B.

Li, T.

Liping, Z.

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

Luo, Z.

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

Moon, D. S.

Mora, J.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).

Ngoi, B. K. A.

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

Paek, U. C.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

Y. G. Han, S. B. Lee, C. S. Kim, Jin. U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,” Opt. Express 11, 476-481 (2003).

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

Paul, J.

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

Ping, F. Z.

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

Rochette, M.

Sansonetti, P.

F. Bakhti and P. Sansonetti, “Wide bandwidth, low loss and highly rejective doubly phase-shifted UV-written fibre bandpass filter,” Electron. Lett. 32, 581-582 (1996).
[CrossRef]

Si, L.

Sova, R. M.

C. S. Kim, R. M. Sova, and Jin. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Sun, G.

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

Sun, J.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Tetu, M.

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).

Wei, D.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).

Yao, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Ye, C.

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

Yuan, S.

Zhao, Y.

Appl. Opt. (1)

Electron. Lett. (1)

F. Bakhti and P. Sansonetti, “Wide bandwidth, low loss and highly rejective doubly phase-shifted UV-written fibre bandpass filter,” Electron. Lett. 32, 581-582 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,” IEEE Photon. Technol. Lett. 12, 1680-1682 (2000).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964-1966 (2006).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, “Multi-wavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383-385 (2003).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

C. S. Kim, R. M. Sova, and Jin. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (2)

G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, “Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator,” Opt. Fiber Technol. 13, 198-201 (2007).

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. 13, 267-270 (2007).

Opt. Lett. (2)

Proc. SPIE (1)

J. Paul, Z. Liping, B. K. A. Ngoi, and F. Z. Ping, “Improvement of thermal sensitivity of FBG sensors by combined cladding etching and polymer coating,” Proc. SPIE 5272, 49-55 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the voltage-controllable multi wavelength Raman fiber ring laser with a single FBG with two phase-shifted regions. The scheme for the voltage-controllable coil heater is shown in the inset.

Fig. 2
Fig. 2

(a) Measured reflection spectrum of the FBG with two phase-shifted regions. (b) Output spectrum of the multiwavelength Raman fiber ring laser with the pump power change at room temperature.

Fig. 3
Fig. 3

Repeatedly scanned output spectra of the multiwavelength Raman fiber ring laser at room temperature.

Fig. 4
Fig. 4

(a) Output spectra of the multiwavelength Raman fiber ring laser with the applied voltage from 1 to 7 V . (b) Lasing wavelength shift as a function of the applied voltage. (c) Induced temperature variation in the proposed coil heater as a function of the applied voltage.

Metrics