Abstract

We propose a miniature pulse compressor that can be used to compensate the group velocity dispersion that is produced by a commercial femtosecond laser cavity. The compressor is composed of two identical highly efficient deep-etched transmissive gratings. Compared with prism pairs, highly efficient deep-etched transmissive grating pairs are lightweight and small. With an optimized groove depth and a duty cycle, 98% diffraction efficiency of the 1 transmissive order can be achieved at a wavelength of 800nm under Littrow conditions. The deep-etched gratings are fabricated in fused silica by inductively coupled plasma etching. With a pair of the fabricated gratings, the input positively chirped 73.9fs pulses are neatly compressed into the nearly Fourier transform-limited 43.2fs pulses. The miniature deep-etched grating-based pulse compressor should be of interest for practical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  2. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003-1006 (1984).
    [CrossRef]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  4. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929-934 (1986).
    [CrossRef]
  5. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45, 1484-1490 (2006).
    [CrossRef] [PubMed]
  6. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
    [CrossRef]
  7. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, “Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers,” Appl. Opt. 41, 2923-2929 (2002).
    [CrossRef] [PubMed]
  8. S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995).
    [CrossRef]
  9. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, and R. Jimenez, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363-3365 (2006).
    [CrossRef] [PubMed]
  10. J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24, 979-984 (2007).
    [CrossRef]
  11. F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
    [CrossRef]
  12. I. Thomann, E. Gagnon, R. J. Jones, A. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, and H. Kapteyn, “Investigation of a grating-based stretcher compressor for carrier-envelope phase stabilized fs pulses,” Opt. Express 12, 3493-3499(2004).
    [CrossRef] [PubMed]
  13. Z. Chang, “Carrier-envelope phase shift caused by grating-based stretchers and compressors,” Appl. Opt. 45, 8350-8353 (2006).
    [CrossRef] [PubMed]
  14. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454-458 (1969).
    [CrossRef]
  15. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571 (2006).
    [CrossRef] [PubMed]
  16. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
    [CrossRef] [PubMed]
  17. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
    [CrossRef] [PubMed]
  18. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767-772 (2005).
    [CrossRef]
  19. B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik 119, 74-80 (2008).
    [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  21. Y. Zhang and C. Zhou, “High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55 μm for dense wavelength division multiplexing application,” J. Opt. Soc. Am. A 22, 331-334 (2005).
    [CrossRef]
  22. B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
    [CrossRef] [PubMed]
  23. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
    [CrossRef]
  24. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145-6152 (2005).
    [CrossRef] [PubMed]
  25. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
    [CrossRef] [PubMed]
  26. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. -J. Fuchs, E. -B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
    [CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (4)

2005 (4)

2004 (1)

2003 (1)

2002 (2)

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, “Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers,” Appl. Opt. 41, 2923-2929 (2002).
[CrossRef] [PubMed]

1995 (2)

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995).
[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
[CrossRef]

1991 (1)

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

1986 (1)

1984 (2)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

Anderson, R.

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Bai, B.

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik 119, 74-80 (2008).
[CrossRef]

Bonner, R. A.

Chang, Z.

Clausnitzer, T.

Comaskey, B. J.

Dai, E.

Ebbers, C. A.

Feng, J.

Fork, R. L.

Fuchs, H. -J.

Gagnon, E.

Gaudiosi, D. M.

Gaylord, T. K.

Gibson, E. A.

Gordon, J. P.

Grann, E. B.

Helbing, F. W.

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

Jimenez, R.

Jones, R. J.

Jovanovic, I.

Jupé, M.

Kane, S.

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995).
[CrossRef]

Kapteyn, H.

Kapteyn, H. C.

Kean, P. N.

Keller, U.

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

Kley, E. -B.

Li, G.

Limpert, J.

Lytle, A.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Martinez, O. E.

Moharam, M. G.

Morse, E. A.

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Murnane, M.

Pennington, D. A.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Pommet, D. A.

Ristau, D.

Ru, H.

Sandhu, A.

Sibbett, W.

Spence, D. E.

Squier, J.

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995).
[CrossRef]

Steinmeyer, G.

G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45, 1484-1490 (2006).
[CrossRef] [PubMed]

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

Stenger, J.

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Telle, H. R.

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

Thomann, I.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
[CrossRef]

Tünnermann, A.

Wang, B.

Wang, S.

Ye, J.

Zellmer, H.

Zhang, Y.

Zheng, J.

Zhou, C.

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik 119, 74-80 (2008).
[CrossRef]

J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
[CrossRef] [PubMed]

B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
[CrossRef] [PubMed]

J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24, 979-984 (2007).
[CrossRef]

S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571 (2006).
[CrossRef] [PubMed]

S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
[CrossRef] [PubMed]

G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767-772 (2005).
[CrossRef]

Y. Zhang and C. Zhou, “High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55 μm for dense wavelength division multiplexing application,” J. Opt. Soc. Am. A 22, 331-334 (2005).
[CrossRef]

E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145-6152 (2005).
[CrossRef] [PubMed]

Zöllner, K.

Appl. Opt. (7)

Appl. Phys. B (1)

F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (5)

Optik (1)

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik 119, 74-80 (2008).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the transmissive deep-etched grating-based pulse compressor (a) with and (b) without a mirror.

Fig. 2
Fig. 2

(a) Numerical simulation of efficiency of 1 transmitted order of fused silica gratings as a function of groove depth and grating period for a TE-polarized wave. The marked point (dashed line) with theoretical efficiency of 95% is selected for experimental implementation. (b) Numerical simulation of efficiency of transmitted orders (0 and 1 orders) of a fused silica grating (with a period of 1070 nm ) as a function of groove depth for a TE-polarized wave. The groove depth of 1500 nm is the result of our experiment.

Fig. 3
Fig. 3

Spectral dependence of the diffraction efficiency of the transmitted 1 order for a TE-polarized wave with a grating period of 1070 nm and a groove depth of 1.5 μm . The diffraction efficiency at a wavelength of 800 nm is approximately 95%.

Fig. 4
Fig. 4

Scanning electron microscope image of a high density surface-relief grating with a period of approximately 1080 nm and an etched depth of approximately 1600 nm .

Fig. 5
Fig. 5

FROG traces of the (a) input pulse, (b) output pulse, (c) retrieved intensities and phases in the time domain of the input (dashed curve) and output (solid curve) pulses.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sin θ = λ 0 2 d ,
α = 1 ,
β = λ 0 2 2 π cd cos θ = λ 0 tan θ π c .
E i ( x , y , t ) = E i ( t ) · E i ( x , y ) = exp ( 2 t 2 ln 2 τ 2 ) exp ( i b t 2 ) exp ( i k ( x 2 + y 2 ) 2 q ( z ) ) ,
q ( z ) = z + i π σ 2 λ ,
E o ( x , y , ω ) E i ( ω ) exp ( i k β 2 ω 2 D ) exp ( i k ( x 2 + y 2 ) 2 q ( z ) )
τ o = τ ( 1 4 b k β 2 D ) 2 + ( 8 k β 2 D ln 2 ) 2 τ 4 .
τ o min = τ 1 / [ 1 + ( b τ 2 / 2 ln 2 ) 2 ] .
τ o = τ o min ( 1 + 8 β 2 D 2 ln 2 τ 2 o min σ 2 ) 1 / 2 ,
D = b τ 2 τ o min 2 8 k β 2 ln 2 2 .

Metrics