Abstract

We report several small-core chalcogenide microstructured fibers fabricated by the “Stack & Draw” technique from Ge15Sb20S65 glass with regular profiles. Mode field diameters and losses have been measured at 1.55μm. For one of the presented fibers, the pitch is 2.5μm, three times smaller than that already obtained in our previous work, and the corresponding mode field diameter is now as small as 3.5μm. This fiber, obtained using a two step “Stack & Draw” technique, is single-mode at 1.55μm from a practical point of view. We also report the first measurement of the attenuation between 1 and 3.5μm of a chalcogenide microstructured fiber. Experimental data concerning fiber attenuation and mode field diameter are compared with calculations. Finally, the origin of fiber attenuation and the nonlinearity of the fibers are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. J. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963(1997).
    [CrossRef] [PubMed]
  2. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crysral fiber,” Opt. Lett. 26, 1356-1358(2001).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27(2000).
    [CrossRef]
  4. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. Windeler, B. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  5. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120-1128(2004).
    [CrossRef]
  6. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
    [CrossRef]
  7. D. Hewak, ed., Properties, Processing and Applications of Glass and Rare Earth-Doped Glasses for Optical Fibers, Vol. 22 of EMIS Datarev. Ser. (INSPEC, 1998).
  8. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
    [CrossRef]
  9. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  10. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280-1285 (2006).
    [CrossRef] [PubMed]
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
    [CrossRef]
  12. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).
  13. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  14. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719-1721 (2007).
    [CrossRef] [PubMed]
  15. Crystal Fibre, http://www.crystal-fibre.com/.
  16. M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
    [CrossRef]
  17. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).
  18. J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
    [CrossRef]
  19. J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  20. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484 (1997).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  22. T. M. Monro and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” C.R. Physique 4, 175-186 (2003).
    [CrossRef]
  23. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005).
    [CrossRef] [PubMed]
  24. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
    [CrossRef]
  25. L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, M. Zghal, G. Mélin, E. Burov, and G. Renversez, “Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimuthal filtering technique,” Opt. Lett. 31, 1779-1781(2006).
    [CrossRef] [PubMed]
  26. V. Tikhomirov, G. J. Adriaenssens, and A. J. Faber, “Photoinduced anisotropy and photorefraction in Pr-doped Ge-Ga-S glasses,” J. Non-Cryst. Solids 213-214, 174-178 (1997).
    [CrossRef]
  27. K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
    [CrossRef]
  28. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520-1524 (2002).
  29. V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11, 2641-2645 (2003).
    [CrossRef]
  30. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
    [CrossRef] [PubMed]
  31. B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. 42, 634-639 (2003).
    [CrossRef] [PubMed]
  32. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: Ultra-flattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
    [CrossRef] [PubMed]

2007 (4)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719-1721 (2007).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (1)

2004 (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120-1128(2004).
[CrossRef]

2003 (5)

2002 (3)

2001 (2)

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crysral fiber,” Opt. Lett. 26, 1356-1358(2001).
[CrossRef]

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

2000 (3)

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27(2000).
[CrossRef]

1997 (3)

1996 (1)

1994 (1)

J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Adam, J. L.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Adriaenssens, G. J.

V. Tikhomirov, G. J. Adriaenssens, and A. J. Faber, “Photoinduced anisotropy and photorefraction in Pr-doped Ge-Ga-S glasses,” J. Non-Cryst. Solids 213-214, 174-178 (1997).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Atkin, D. M.

Bahloul, F.

Barthélémy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

Bétourné, A.

Birks, T. A.

Bohnke, O.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Bordas, F.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Bouwmans, G.

Brilland, L.

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Burov, E.

Busse, L. E.

J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Chartier, T.

Chau, A. H. L.

Churbanov, M. F.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

Coen, S.

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

Douay, M.

Dudley, J. M.

Duverger, C.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Eggleton, B.

Eggleton, B. J.

Faber, A. J.

V. Tikhomirov, G. J. Adriaenssens, and A. J. Faber, “Photoinduced anisotropy and photorefraction in Pr-doped Ge-Ga-S glasses,” J. Non-Cryst. Solids 213-214, 174-178 (1997).
[CrossRef]

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120-1128(2004).
[CrossRef]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Frampton, K.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Fu, L. B.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

George, A. K.

Grossard, N.

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
[CrossRef]

Guignard, M.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Harvey, J. D.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Kiang, K. M.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Knight, J. C.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Kudlinski, A.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Kuhlmey, B.

Kuhlmey, B. T.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Labonté, L.

Lamont, M. R.

Leonhardt, R.

Mägi, E. C.

Maillotte, H.

Martinelli, G.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Maystre, D.

McPhedran, R.

Mélin, G.

Monro, T.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Monro, T. M.

T. M. Monro and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” C.R. Physique 4, 175-186 (2003).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Monteville, A.

Moore, R.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Moreac, A.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Nazabal, V.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Newak, D. W.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Nguyen, H. C.

Nguyen, T.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
[CrossRef]

Omenetto, F. G.

Pagnoux, D.

Perrin, M.

Plotnichenko, V. G.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

Provino, L.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

Quiquempois, Y.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719-1721 (2007).
[CrossRef] [PubMed]

Ranka, J. K.

Ravi Kanth Kumar, V. V.

Reeves, W. H.

Renversez, G.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

T. M. Monro and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” C.R. Physique 4, 175-186 (2003).
[CrossRef]

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Roy, P.

Russel, P. St. J.

Russell, P. J. S.

Russell, P. St. J.

Rutt, H. N.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

Smektala, F.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280-1285 (2006).
[CrossRef] [PubMed]

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Snopatin, G. E.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

Stentz, A. J.

Taylor, A. J.

Tikhomirov, V.

V. Tikhomirov, G. J. Adriaenssens, and A. J. Faber, “Photoinduced anisotropy and photorefraction in Pr-doped Ge-Ga-S glasses,” J. Non-Cryst. Solids 213-214, 174-178 (1997).
[CrossRef]

Traynor, N.

Troles, J.

Tucknott, J.

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Windeler, R.

Windeler, R. S.

Yeom, D. I.

Zeghlache, H.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Zghal, M.

Zolla, F.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
[CrossRef]

Adv. Funct. Mater. (1)

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moreac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17, 3284-3294 (2007).
[CrossRef]

Appl. Opt. (1)

C.R. Physique (1)

T. M. Monro and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” C.R. Physique 4, 175-186 (2003).
[CrossRef]

Electron. Lett. (2)

K. M. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. W. Newak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. S. Sanghera, L. E. Busse, and I. D. Aggarwal, “Effect of scattering centers on the optical loss of As2s3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994).
[CrossRef]

J. Non-Cryst. Solids (2)

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274, 232-237(2000).
[CrossRef]

V. Tikhomirov, G. J. Adriaenssens, and A. J. Faber, “Photoinduced anisotropy and photorefraction in Pr-doped Ge-Ga-S glasses,” J. Non-Cryst. Solids 213-214, 174-178 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (2)

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341-349 (2001).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148-2155 (2006).

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120-1128(2004).
[CrossRef]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt Eng. 46, 010503 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (9)

L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, M. Zghal, G. Mélin, E. Burov, and G. Renversez, “Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimuthal filtering technique,” Opt. Lett. 31, 1779-1781(2006).
[CrossRef] [PubMed]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719-1721 (2007).
[CrossRef] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005).
[CrossRef] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: Ultra-flattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27(2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484 (1997).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. J. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963(1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crysral fiber,” Opt. Lett. 26, 1356-1358(2001).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184(2006).
[CrossRef]

Other (4)

D. Hewak, ed., Properties, Processing and Applications of Glass and Rare Earth-Doped Glasses for Optical Fibers, Vol. 22 of EMIS Datarev. Ser. (INSPEC, 1998).

Crystal Fibre, http://www.crystal-fibre.com/.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Chalcogenide glass tube.

Fig. 2
Fig. 2

Typical attenuation curve of 2SG glass monoindex fiber, Φ ext = 400 μm .

Fig. 3
Fig. 3

Jacketing of the stack, drawing and jacketing of the microstructured stick to get small-core MF.

Fig. 4
Fig. 4

Picture of the cross section of 2SG fiber MF1.

Fig. 5
Fig. 5

Picture of the cross section of 2SG fiber MF2b, Φ core = 4 μm .

Fig. 6
Fig. 6

Near-field observation of the guided beam at 1.55 μm in the MF1

Fig. 7
Fig. 7

Near-field observation of the guided beam at 1.55 μm with indium coating.

Fig. 8
Fig. 8

Experimental profiles at 1.55 μm m in the MF1.

Fig. 9
Fig. 9

Attenuation curve of MF2a between 1 and 3.5 μm .

Fig. 10
Fig. 10

Experimental profiles of the output beam at 1.55 μm m in the small-core fiber MF2b.

Tables (1)

Tables Icon

Table 1 Summary of the Different Drawings

Metrics