Abstract

In order to analyze the effect of beam type on free space optical communication systems, bit error rate (BER) values versus signal-to-noise ratio (SNR) are calculated for zero order and higher order general beam types, namely for Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams. BER analysis is based on optical scintillation using log-normal distribution for the intensity, which is valid in weak atmospheric turbulence. BERs for these beams are plotted under variations of propagation length, source size, wavelength of operation, and order of the beam. According to our graphical outputs, at small source sizes and long propagation distances, the smallest BER value is obtained for the annular beam. On the other hand, at large source size and small propagation distance, the smallest BER value is obtained for the cos-Gaussian beam. Moreover, our study of the order of the beam shows that higher order beams have lower BER values than the zero order beams at longer propagation distances. But this drop compared with the order seems to be incremental.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
    [CrossRef]
  2. S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
    [CrossRef]
  3. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Am. A 19, 753-758 (2002).
    [CrossRef]
  4. R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
    [CrossRef]
  5. T. Deng and Y. L. Xiaoxiao, “Performance evaluation of free space optical communication system,” in Proceedings of IEEE Conference on Wireless Communications, Networking and Mobile Computing (IEEE, 2005), pp. 587-590.
  6. N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
    [CrossRef]
  7. H. Manor and S. Arnon, “Performance of an optical wireless communication system as a function of wavelength,” Appl. Opt. 42, 4285-4294 (2003).
    [CrossRef] [PubMed]
  8. R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42, 4239-4243 (2003).
    [CrossRef] [PubMed]
  9. J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856-866 (2003).
    [CrossRef]
  10. J. C. Ricklin and F. M. Davidson, “Bit error rate in a free-space laser communication systems with a partially coherent signal beam,” Proc. SPIE 4884, 95-103 (2003).
    [CrossRef]
  11. O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
    [CrossRef]
  12. F. S. Vetelino, C. Young, and L. Andrews, “Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence,” Appl. Opt. 46, 3780-3789 (2007).
    [CrossRef] [PubMed]
  13. S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
    [CrossRef]
  14. Ç. Arpali, C. Yazıcıoğlu, H. E. Eyyuboğlu, S. Altay Arpali, and Y. Baykal, “Simulator for general-type beam propagation in turbulent atmosphere,” Opt. Express 14, 8918-8928 (2006).
    [CrossRef] [PubMed]
  15. L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265-275(2004).
    [CrossRef]
  16. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

2008 (1)

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
[CrossRef]

2007 (2)

F. S. Vetelino, C. Young, and L. Andrews, “Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence,” Appl. Opt. 46, 3780-3789 (2007).
[CrossRef] [PubMed]

N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
[CrossRef]

2006 (1)

2005 (1)

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

2004 (2)

O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265-275(2004).
[CrossRef]

2003 (4)

2002 (1)

R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Am. A 19, 753-758 (2002).
[CrossRef]

1997 (1)

S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
[CrossRef]

Andrews, L.

Andrews, L. C.

O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265-275(2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Arnon, S.

H. Manor and S. Arnon, “Performance of an optical wireless communication system as a function of wavelength,” Appl. Opt. 42, 4285-4294 (2003).
[CrossRef] [PubMed]

S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
[CrossRef]

Arpali, Ç.

Arpali, S. A.

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
[CrossRef]

Arpali, S. Altay

Baykal, Y.

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
[CrossRef]

Ç. Arpali, C. Yazıcıoğlu, H. E. Eyyuboğlu, S. Altay Arpali, and Y. Baykal, “Simulator for general-type beam propagation in turbulent atmosphere,” Opt. Express 14, 8918-8928 (2006).
[CrossRef] [PubMed]

Burris, R.

N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
[CrossRef]

Canning, D. E.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42, 4239-4243 (2003).
[CrossRef] [PubMed]

Davidson, F. M.

J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856-866 (2003).
[CrossRef]

J. C. Ricklin and F. M. Davidson, “Bit error rate in a free-space laser communication systems with a partially coherent signal beam,” Proc. SPIE 4884, 95-103 (2003).
[CrossRef]

Deng, T.

T. Deng and Y. L. Xiaoxiao, “Performance evaluation of free space optical communication system,” in Proceedings of IEEE Conference on Wireless Communications, Networking and Mobile Computing (IEEE, 2005), pp. 587-590.

Eyyuboglu, H. E.

Eyyuboglu, H. T.

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
[CrossRef]

Gilbreath, G. C.

N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Kopeika, N. S.

S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
[CrossRef]

Korotkova, O.

O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Manor, H.

Namazi, N.

N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
[CrossRef]

Philips, R. L.

O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265-275(2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Ricklin, J. C.

J. C. Ricklin and F. M. Davidson, “Bit error rate in a free-space laser communication systems with a partially coherent signal beam,” Proc. SPIE 4884, 95-103 (2003).
[CrossRef]

J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856-866 (2003).
[CrossRef]

Rotman, S. R.

S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
[CrossRef]

Tharp, J. S.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

Tyson, R. K.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42, 4239-4243 (2003).
[CrossRef] [PubMed]

R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Am. A 19, 753-758 (2002).
[CrossRef]

Vetelino, F. S.

Xiaoxiao, Y. L.

T. Deng and Y. L. Xiaoxiao, “Performance evaluation of free space optical communication system,” in Proceedings of IEEE Conference on Wireless Communications, Networking and Mobile Computing (IEEE, 2005), pp. 587-590.

Yazicioglu, C.

Young, C.

Appl. Opt. (3)

J. Mod. Opt. (1)

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227-239 (2008).
[CrossRef]

J. Opt. Am. A (1)

R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Am. A 19, 753-758 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (4)

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

S. Arnon, S. R. Rotman, and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Opt. Eng. 36, 3148-3157 (1997).
[CrossRef]

N. Namazi, R. Burris, Jr., and G. C. Gilbreath, “Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication,” Opt. Eng. 46, 025007 (2007).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Philips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265-275(2004).
[CrossRef]

J. C. Ricklin and F. M. Davidson, “Bit error rate in a free-space laser communication systems with a partially coherent signal beam,” Proc. SPIE 4884, 95-103 (2003).
[CrossRef]

Other (3)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

T. Deng and Y. L. Xiaoxiao, “Performance evaluation of free space optical communication system,” in Proceedings of IEEE Conference on Wireless Communications, Networking and Mobile Computing (IEEE, 2005), pp. 587-590.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

BER of zero order ( n = 0 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 3 km , α s = 2 cm .

Fig. 2
Fig. 2

BER of zero order ( n = 0 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 2.5 km , α s = 2 cm .

Fig. 3
Fig. 3

BER of zero order ( n = 0 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 2.5 km , α s = 3 cm .

Fig. 4
Fig. 4

BER of zero order ( n = 0 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 3 km , α s = 1 cm .

Fig. 5
Fig. 5

BER of higher order ( n = 2 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 3 km , α s = 1 cm .

Fig. 6
Fig. 6

BER of higher order ( n = 4 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 3 km , α s = 1 cm .

Fig. 7
Fig. 7

BER of higher order ( n = 4 , m = 0 ) Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams versus SNR at selected values of propagation parameters for L = 2 km , λ = 0.85 μm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR 0 = i s σ N .
SNR = SNR 0 P SO P S + σ I 2 SNR 0 2 ,
BER = 1 2 0 p I ( u ) erfc ( SNR u 2 2 ) d u ,
p I ( u ) = 1 u σ I 2 π exp { [ ln ( u ) + 1 2 σ I 2 ] 2 2 σ I 2 } , u > 0 ,

Metrics