Abstract

Laser induced breakdown spectroscopy (LIBS) is commonly used to identify elemental compositions of various samples. To facilitate this task, we propose the use of an elemental spectral library for single-pulsed, nanosecond LIBS in the spectral range 198968nm. This spectroscopic library is generated by measuring optical emissions from plasmas of 40 pure elements. To demonstrate the usefulness of the proposed database, we measure and analyze the LIBS spectra of pure iron and of ethanol and show that we identify these samples with a high degree of certainty.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Jarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry (Blackie Academic and Professional, 1992).
  2. P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: its present and future position in analytical chemistry,” Z. J. Anal. Chem. 299, 337-361(1979).
    [CrossRef]
  3. F. Yueh, J. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2066-2087.
  4. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
    [CrossRef] [PubMed]
  5. P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivollan, “Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer,” Appl. Opt. 42, 6029-6035 (2003).
    [CrossRef] [PubMed]
  6. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
    [CrossRef] [PubMed]
  7. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
    [CrossRef] [PubMed]
  8. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef] [PubMed]
  9. A. C. Samuels, F. C. DeLucia, K. L. McNesbby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  10. E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
    [CrossRef] [PubMed]
  11. Y. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, 2000).
  12. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War Oil Spill contaminated soil using laser-induced breakdown spectroscopy,” Environ Monit. Assess. 136, 391-399 (2007).
    [CrossRef] [PubMed]
  13. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221-6225 (2003).
    [CrossRef] [PubMed]
  14. T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
    [CrossRef]
  15. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration, ”Appl. Spectrosc. 58, 897-909(2004).
    [CrossRef] [PubMed]
  16. A. K. Rai, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078-84 (2003).
    [CrossRef] [PubMed]
  17. F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloy,” Appl. Spectrosc. 61, 327-32 (2007).
    [CrossRef] [PubMed]
  18. M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
    [CrossRef]
  19. K. Loebe, A. Uhl, and H. Lucht, “Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6166-6173 (2003).
    [CrossRef] [PubMed]
  20. National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/ASD/index.html
  21. United States Army Research Laboratory,http://www.arl.army.mil/www/default.cfm?Action=247&Page=250
  22. F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
    [CrossRef]
  23. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
    [CrossRef]

2007 (4)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War Oil Spill contaminated soil using laser-induced breakdown spectroscopy,” Environ Monit. Assess. 136, 391-399 (2007).
[CrossRef] [PubMed]

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloy,” Appl. Spectrosc. 61, 327-32 (2007).
[CrossRef] [PubMed]

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

2006 (2)

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
[CrossRef] [PubMed]

2005 (2)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

2004 (2)

2003 (6)

1996 (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[CrossRef] [PubMed]

1979 (1)

P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: its present and future position in analytical chemistry,” Z. J. Anal. Chem. 299, 337-361(1979).
[CrossRef]

Afonso, C. N.

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Angel, S. M.

Arp, Z. A.

Baig, M. A.

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

Bakry, A. H.

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

Belliveau, T. F.

Boumans, P. W. J. M.

P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: its present and future position in analytical chemistry,” Z. J. Anal. Chem. 299, 337-361(1979).
[CrossRef]

Brennetot, R.

Buckley, S. G.

Capitelli, M.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
[CrossRef]

Casavola, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
[CrossRef]

Chave, A. D.

Colonna, G.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
[CrossRef]

Cremers, D. A.

De Giacomo, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
[CrossRef]

DeLucia, F. C.

Dixon, P. B.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Doucet, F. R.

Fichet, P.

Fortier, J. L.

Gondal, M. A.

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War Oil Spill contaminated soil using laser-induced breakdown spectroscopy,” Environ Monit. Assess. 136, 391-399 (2007).
[CrossRef] [PubMed]

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

Gondal A, M. A.

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

Gordillo-Vazquez, F. J.

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Gray, A. L.

K. E. Jarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry (Blackie Academic and Professional, 1992).

Hahn, D. W.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Houk, R. S.

K. E. Jarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry (Blackie Academic and Professional, 1992).

Hubert, J.

Hussain, T.

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War Oil Spill contaminated soil using laser-induced breakdown spectroscopy,” Environ Monit. Assess. 136, 391-399 (2007).
[CrossRef] [PubMed]

Hybl, J. D.

Jarvis, K. E.

K. E. Jarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry (Blackie Academic and Professional, 1992).

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[CrossRef] [PubMed]

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[CrossRef] [PubMed]

Lawrence-Snyder, M.

Lee, Y.

Y. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, 2000).

Lithgow, G. A.

Loebe, K.

Lucht, H.

Maurice, S.

McKiernan, A. P.

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

McNesbby, K. L.

Menut, D.

Michel, A. P.

Miziolek, A. W.

Noll, R.

Perea, A.

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Rai, A. K.

Rivollan, A.

Sallé, B.

Salmon, L.

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

Samuels, A. C.

Scaffidi, J.

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[CrossRef] [PubMed]

Singh, J.

F. Yueh, J. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2066-2087.

Singh, J. P.

Sneddon, J.

Y. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, 2000).

Song, K.

Y. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, 2000).

Sturm, V.

Uhl, A.

Vors, E.

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivollan, “Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer,” Appl. Opt. 42, 6029-6035 (2003).
[CrossRef] [PubMed]

Wayne, D. M.

Wiens, R. C.

Yamani, Z. H.

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

Yueh, F.

F. Yueh, J. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2066-2087.

Yueh, F. Y.

Zhang, H.

F. Yueh, J. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2066-2087.

Anal. Bioanal. Chem. (2)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[CrossRef] [PubMed]

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

F. J. Gordillo-Vazquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Appl. Spectrosc. (4)

Environ Monit. Assess. (1)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War Oil Spill contaminated soil using laser-induced breakdown spectroscopy,” Environ Monit. Assess. 136, 391-399 (2007).
[CrossRef] [PubMed]

Environ. Monit. Assess. (1)

T. Hussain, M. A. Gondal, Z. H. Yamani, and M. A. Baig, “Measurement of nutrients in green house soil with laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 124, 131-139 (2007).
[CrossRef]

J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. (1)

M. A. Gondal A, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser-induced breakdown spectroscopy,” J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 767-775 (2007).
[CrossRef]

Spectrochim. Acta, Part B (1)

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59271-289(2004) .
[CrossRef]

Z. J. Anal. Chem. (1)

P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: its present and future position in analytical chemistry,” Z. J. Anal. Chem. 299, 337-361(1979).
[CrossRef]

Other (5)

F. Yueh, J. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2066-2087.

K. E. Jarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry (Blackie Academic and Professional, 1992).

Y. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, 2000).

National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/ASD/index.html

United States Army Research Laboratory,http://www.arl.army.mil/www/default.cfm?Action=247&Page=250

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. P, prism; BS, beam splitter; L1, focusing lens; L2, collecting lens; EM, energy meter; PD photodiode; SP, spectrometer; OFB, optical fiber bundle; FM, flow meter; HL, helium line.

Fig. 2
Fig. 2

Spectra of four elements measured at irradiances between 5.2 × 10 9 and 9.7 × 10 9 W / cm 3 : (a) helium, (b) carbon, (c) iodine, (d) sulfur and (d) selenium.

Fig. 3
Fig. 3

Use of the LIBS Database for the identification of two emission lines generated in ethanol.

Tables (4)

Tables Icon

Table 3 Table of the LIBS Spectra Measured

Tables Icon

Table 1 List of the Most Common, Intense, Neutral, and First Ionized State Observed Lines for Iodine as Reported in the NIST Handbook of Basic Atomic Spectroscopic Data Emission Lines and Measured Using LIBS a

Tables Icon

Table 2 List of the Most Common, Intense, Neutral and First Ionized State Observed Lines for Selenium as Reported in the NIST Handbook of Basic Atomic Spectroscopic Data Emission Lines and Measured Using LIBS a

Tables Icon

Table 3 List of the Most Common, Intense, Neutral, and First Ionized State Observed Lines for Sulfur as Reported in the NIST Handbook of Basic Atomic Spectroscopic Data Emission Lines and Measured Using LIBS a

Metrics