Abstract

A movable probe that fiber couples both the beam delivery and the signal collection functions of gas-phase laser-induced breakdown spectroscopy (LIBS) measurements was evaluated. The adjustable probe was used to investigate the effect of delivery fiber curvature on plasma characteristics and the associated effect on LIBS spectra and to further identify issues remaining to facilitate fully fiber-coupled gas-phase LIBS measurements. LIBS data were collected from lean methane–air mixtures of various equivalence ratios and spectroscopically analyzed to establish the ability to determine relative fuel–air ratio. Measurements with straight delivery fiber were compared to those with the fiber curved at specific radii. Decreasing fiber radius of curvature decreased fiber transmission efficiency and reduced the spark formation probability by almost a factor of 2. For constant fiber input energy, this decreased transmission increased the percentage of failed spark formations and influenced the LIBS elemental ratio calculations. However, minimal difference was found between LIBS measurements with straight or curved fiber as long as the output energy and a constant laser beam spot diameter were maintained on the exit beam focusing lens. A significant reduction in data scatter and improved linearity were achieved by using the Balmer series Hα and Hβ hydrogen emission line ratio as a data selection criterion. Observed linear variation of H/N elemental ratio with equivalence ratio confirmed the possibility of a flexible, light-contained, fully fiber-coupled probe for remote gas-phase LIBS analysis.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, “Direct detection of beryllium on filters using the laser spark,” Appl. Spectrosc. 39, 57-63 (1985).
    [CrossRef]
  2. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef] [PubMed]
  3. B. Lal, F. Y. Yueh, and J. P. Singh, “Glass-batch composition monitoring by laser-induced breakdown spectroscopy,” Appl. Opt. 44, 3668-3674 (2005).
    [CrossRef] [PubMed]
  4. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331-340 (2000).
    [CrossRef]
  5. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  6. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
    [CrossRef]
  7. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).
  8. S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
    [CrossRef]
  9. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003).
    [CrossRef] [PubMed]
  10. F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7, 447-457 (2006).
    [CrossRef]
  11. T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
    [CrossRef]
  12. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
    [CrossRef]
  13. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and NC3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221-6225 (2003).
    [CrossRef] [PubMed]
  14. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
    [CrossRef]
  15. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
    [CrossRef]
  16. P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
    [CrossRef]
  17. L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007).
    [CrossRef]
  18. A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
    [CrossRef]
  19. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, and M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30, 2083-2085(2005).
    [CrossRef] [PubMed]
  20. C. E. Dumitrescu, P. V. Puzinauskas, S. Olcmen, S. G. Buckley, S. Joshi, and A. P. Yalin, “Fiber-optic spark delivery for gas-phase laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 1338-1343 (2007).
    [CrossRef]
  21. T. F. Johnston and M. W. Sasnett, “Characterization of laser beams: the M2 model,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (CRC Press, 2004), pp. 1-70.
    [CrossRef]
  22. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
    [CrossRef]
  23. C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
    [CrossRef]
  24. C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42, 5992-6000 (2003).
    [CrossRef] [PubMed]
  25. http://architect.wwwcomm.com/Uploads/Princeton/Documents/Datasheets/Princeton_Instruments_Acton_Standard_Rev_A1.pdf.
  26. S. Sato, H. Ashida, T. Arai, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation,” Opt. Lett. 25, 49-51(2000).
    [CrossRef]
  27. http://www.newport.com/Focusing-and-Collimating/141191/1033/catalog.aspx.
  28. V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
    [CrossRef] [PubMed]

2007 (2)

L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007).
[CrossRef]

C. E. Dumitrescu, P. V. Puzinauskas, S. Olcmen, S. G. Buckley, S. Joshi, and A. P. Yalin, “Fiber-optic spark delivery for gas-phase laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 1338-1343 (2007).
[CrossRef]

2006 (2)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7, 447-457 (2006).
[CrossRef]

2005 (3)

2004 (3)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

2003 (4)

2002 (1)

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

2001 (1)

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

2000 (3)

1999 (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

1996 (1)

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

1995 (1)

C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
[CrossRef]

1985 (1)

Angelopoulos, G. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Arai, T.

Ashida, H.

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

Buckley, S. G.

C. E. Dumitrescu, P. V. Puzinauskas, S. Olcmen, S. G. Buckley, S. Joshi, and A. P. Yalin, “Fiber-optic spark delivery for gas-phase laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 1338-1343 (2007).
[CrossRef]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7, 447-457 (2006).
[CrossRef]

J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
[CrossRef] [PubMed]

F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003).
[CrossRef] [PubMed]

S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Bulatov, V.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Carney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

Couris, S.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Cremers, D. A.

DeFoort, M.

Dumitrescu, C. E.

Ferioli, F.

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7, 447-457 (2006).
[CrossRef]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003).
[CrossRef] [PubMed]

Ferris, M. J.

Hahn, D. W.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Hencken, K. R.

S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

Hybl, J. D.

Johnsen., H. A.

S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Johnston, T. F.

T. F. Johnston and M. W. Sasnett, “Characterization of laser beams: the M2 model,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (CRC Press, 2004), pp. 1-70.
[CrossRef]

Joshi, S.

Knight, A. K.

Lal, B.

Lewis, J. W. L.

C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
[CrossRef]

Lithgow, G. A.

Matsuura, Y.

Michalakou, A.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

Miyagi, M.

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
[CrossRef]

Noll, R.

Oks, E.

Olcmen, S.

Palagas, C.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
[CrossRef]

Papamantellos, D. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Parigger, C.

C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
[CrossRef]

Parigger, C. G.

Phuoc, T. X.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

Plemmons, D. H.

C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42, 5992-6000 (2003).
[CrossRef] [PubMed]

C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
[CrossRef]

Puzinauskas, P. V.

Radziemski, L. J.

Rai, A. K.

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

Sasnett, M. W.

T. F. Johnston and M. W. Sasnett, “Characterization of laser beams: the M2 model,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (CRC Press, 2004), pp. 1-70.
[CrossRef]

Sato, S.

Schechter, I.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
[CrossRef]

Scherbarth, N. L.

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

Shi, Y.-W.

Singh, J. P.

B. Lal, F. Y. Yueh, and J. P. Singh, “Glass-batch composition monitoring by laser-induced breakdown spectroscopy,” Appl. Opt. 44, 3668-3674 (2005).
[CrossRef] [PubMed]

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Skevis, G.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

Stavropoulos, P.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Sturm, V.

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

Tachibana, S.

L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007).
[CrossRef]

Weisburg, A.

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

Willson, B.

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

Xu, L.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Yalin, A. P.

Yueh, F. Y.

B. Lal, F. Y. Yueh, and J. P. Singh, “Glass-batch composition monitoring by laser-induced breakdown spectroscopy,” Appl. Opt. 44, 3668-3674 (2005).
[CrossRef] [PubMed]

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Zhang, H.

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Zimmer, L.

L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007).
[CrossRef]

Anal. Chem. (1)

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (5)

Combust. Flame (2)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55-77 (2004).
[CrossRef]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Fuel (1)

T. X. Phuoc and F. P. White, “Laser-induced spark for measurement of fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

Int. J. Engine Res. (1)

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7, 447-457 (2006).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Electron number density and temperature measurement in a laser induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249-255 (1995).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (1)

L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007).
[CrossRef]

Recent Res. Dev. Appl. Spectrosc. (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Carney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Spectrochim. Acta Part B (4)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Weisburg, “Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371-2383 (2001).
[CrossRef]

Waste Manage. (1)

S. G. Buckley, H. A. Johnsen., K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Other (5)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
[CrossRef]

T. F. Johnston and M. W. Sasnett, “Characterization of laser beams: the M2 model,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (CRC Press, 2004), pp. 1-70.
[CrossRef]

http://architect.wwwcomm.com/Uploads/Princeton/Documents/Datasheets/Princeton_Instruments_Acton_Standard_Rev_A1.pdf.

http://www.newport.com/Focusing-and-Collimating/141191/1033/catalog.aspx.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

LIBS fiber probe inlet.

Fig. 2
Fig. 2

Focusing spot formed by the two-lens combination.

Fig. 3
Fig. 3

LIBS fiber probe—the outlet part.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Inlet fiber degradation at the end of the experiments.

Fig. 6
Fig. 6

Laser beam burn paper shots in front of the LIBS focusing lens. 1 m curved radius, 30 mJ (right); straight fiber, 31 mJ (center); and 36 mJ (left).

Fig. 7
Fig. 7

Average H 656 / H 486 elemental ratio values as a function of equivalence ratio for fiber in the straight position.

Fig. 8
Fig. 8

Average H 656 / N total elemental ratio values as a function of equivalence ratio for fiber in the straight position.

Fig. 9
Fig. 9

Average H 656 / H 486 elemental ratio values for curved fiber (straight fiber at 34 mJ is plotted for comparison).

Fig. 10
Fig. 10

Average H 656 / N total elemental ratio values for curved fiber (straight fiber at 34 mJ is plotted for comparison).

Fig. 11
Fig. 11

Average H 656 / H 486 elemental ratio distribution for straight and curved fiber.

Fig. 12
Fig. 12

Average and standard deviation of H 656 / N total elemental ratio values for straight fiber, corresponding to H 656 / H 486 = 9 .

Fig. 13
Fig. 13

Average and standard deviation H 656 / N total elemental ratio values for curved fiber (straight fiber at 34 mJ is plotted for comparison).

Tables (6)

Tables Icon

Table 1 Fiber Energy Transmission And Sparking Probability

Tables Icon

Table 2 Distance between the Fiber End and the Collimating Lens for Constant Beam Spot Size in Front of the Focusing Lens

Tables Icon

Table 3 Rejected Shots from 3000 LIBS Plasma Measurements Based on Qualification of H 656 / H 486 , H 656 / N total , and H 656 / N 746 Ratios for Various Output Energy and Fiber Curvatures

Tables Icon

Table 4 Correlation Coefficient and Standard Deviations of the H 656 / H 486 and H 656 / N total Ratios for All Acquired Data

Tables Icon

Table 5 Number of Measurements with H 656 / H 486 Ratio Values between 0 and 2 and Their Percentage of Total Measurements

Tables Icon

Table 6 Linear Correlation Coefficient R 2 Values for H 656 / N total Variation with Φ

Metrics