Abstract

Laser-induced breakdown spectroscopy (LIBS) was used to discern between two biological agent surrogates (Bacillus atrophaeus and ovalbumin) and potential interferent compounds (mold spores, humic acid, house dust, and Arizona road dust). Multiple linear regression and neural network analysis models were constructed by using B. atrophaeus and ovalbumin spectra, and limits of detection were calculated. Classification of the agent surrogates’ LIBS spectra was attempted by using a neural network model. False negative rates of 0% were observed for B. atrophaeus (100 colony forming units) spore spectra with the neural network model used for classification.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Counterterrorism and Forensic Science Research Unit, Laboratory Division, United States, and Bioterrorism Preparedness and Response Program, Bioterrorism Rapid Response and Advanced Technology Laboratory, National Center for Infectious Diseases, Centers for Disease Control and Prevention, “Preliminary Findings on the evaluation of hand-held immunoassays for Bacillus anthracis and Yersinia pestis,” in Vol. 5, Issue 1 of Forensic Science Communications (U.S. Department of Justice, Federal Bureau of Investigation, 2003).
  2. U.S. General Services Administration, “GSA policy advisory: guidelines for federal mail centers in the Washington, DC, metropolitan area for managing possible anthrax contamination” (U.S. General Services Administration, 2007).
  3. A. C. Samuels, F. C. De Lucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  4. Y. D. Mattley, “Portable laser induced breakdown spectroscopy (LIBS) bioanalyzer,” Doc. No. AFRL-HE-BR-TR-2004-0133 (Department of Defense, 2004).
  5. E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).
  6. J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
    [CrossRef]
  7. E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
    [CrossRef] [PubMed]
  8. C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
    [CrossRef]
  9. D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).
  10. C. Bishop, Neural Networks for Pattern Recognition, 1st ed. (Oxford U. Press, 1995).
  11. J. Zupon and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).
  12. R. S. Thomas, “Ultrastructural localization of mineral matter in bacterial spores by microincineration,” J. Cell Biol. 23, 113-133 (1964).
    [CrossRef] [PubMed]
  13. L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
    [PubMed]
  14. J. E. Carranza and D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779-790 (2002).
    [CrossRef]
  15. J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
    [CrossRef] [PubMed]
  16. D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
    [CrossRef]
  17. United States Dairy Export Council, “Skim milk powder--specific grading requirements for skim milk powder” (United States Dairy Export Council, 2006), retrieved 12 Nov. 2007, http://dev.www.usdec.org/products/MilkPowderSpecs/content.cfm?itemnumber=477.
  18. J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).
  19. J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
    [CrossRef] [PubMed]
  20. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119-6132 (2003).
    [CrossRef] [PubMed]
  21. H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
    [CrossRef]
  22. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
    [CrossRef]
  23. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
    [CrossRef]
  24. Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
    [CrossRef]
  25. V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
    [CrossRef]
  26. A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
    [CrossRef]

2008

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
[CrossRef]

2007

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

2006

A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
[CrossRef]

E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
[CrossRef] [PubMed]

J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
[CrossRef] [PubMed]

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

2005

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

2003

2002

J. E. Carranza and D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779-790 (2002).
[CrossRef]

2001

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

1970

L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
[PubMed]

1964

R. S. Thomas, “Ultrastructural localization of mineral matter in bacterial spores by microincineration,” J. Cell Biol. 23, 113-133 (1964).
[CrossRef] [PubMed]

Gerhardt, P.

L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
[PubMed]

Anglos, D.

A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
[CrossRef]

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Beddows, D. C. S.

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119-6132 (2003).
[CrossRef] [PubMed]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Benedetti, M. F.

D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
[CrossRef]

Berry, S. R.

Bishop, C.

C. Bishop, Neural Networks for Pattern Recognition, 1st ed. (Oxford U. Press, 1995).

Borgia, I.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Bousquet, B.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Boyain-Goitia, A. R.

Brunetti, B. G.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Cabrera Beaman, T.

L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
[PubMed]

Canioni, L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Carranza, J. E.

J. E. Carranza and D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779-790 (2002).
[CrossRef]

Clegg, S. M.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Colao, F.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

De Lucia, F. C.

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. De Lucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

DeLucia, F.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

DeLucia, F. C.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
[CrossRef]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Fantoni, R.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Fedosejevs, R.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

Gasteiger, J.

J. Zupon and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

Giakoumaki, A.

A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
[CrossRef]

Gibb Snyder, E.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Gibb-Snyder, E.

Godwal, Y.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

Gottfried, J.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Gottfried, J. L.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
[CrossRef]

Griffiths, B. C.

Gullett, B.

E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
[CrossRef] [PubMed]

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Hahn, D. W.

J. E. Carranza and D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779-790 (2002).
[CrossRef]

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Hybl, J. D.

Jordan, M. P.

Kinniburgh, D. G.

D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
[CrossRef]

Kleinbaum, D. G.

D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).

Koopal, L. K.

D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
[CrossRef]

Kupper, L. L.

D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).

Lazic, V.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Le Hecho, I.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Lucey, P. G.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Lui, S. L.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

Mattley, Y. D.

Y. D. Mattley, “Portable laser induced breakdown spectroscopy (LIBS) bioanalyzer,” Doc. No. AFRL-HE-BR-TR-2004-0133 (Department of Defense, 2004).

Matz, L. L.

L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
[PubMed]

McNesby, K. L.

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. De Lucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Misra, A. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Miziolek, A.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Miziolek, A. W.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. De Lucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Muller, K. E.

D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).

Munson, C.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Munson, C. A.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62,353-363 (2008).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

Nizam, A.

D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).

Noll, R.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Osticioli, I.

A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
[CrossRef]

Oudejans, L.

Palucci, A.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

Potin-Gautier, M.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Rosati, J.

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Ryan, S.

E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
[CrossRef] [PubMed]

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Samek, O.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Samuels, A. C.

Sarger, L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Sgamellotti, A.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Sharma, S. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Sirven, J. B.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Spizzichino, V.

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Taschuk, M. T.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

Telle, H. H.

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119-6132 (2003).
[CrossRef] [PubMed]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Tellier, S.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Thomas, R. S.

R. S. Thomas, “Ultrastructural localization of mineral matter in bacterial spores by microincineration,” J. Cell Biol. 23, 113-133 (1964).
[CrossRef] [PubMed]

Touati, A.

Tsui, Y. Y.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

Tysk, S. M.

Van Riemsdijk, W. H.

D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
[CrossRef]

Wiens, R. C.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Zupan, J.

J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

Zupon, J.

J. Zupon and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

Anal. Bioanal. Chem.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

A. Giakoumaki, I. Osticioli, and D. Anglos, “Spectroscopic analysis using a hybrid LIBS-Raman system,” Appl. Phys. A 83, 537-541 (2006).
[CrossRef]

Appl. Spectrosc.

J. Bacteriol.

L. L. Matz, T. Cabrera Beaman, and P. Gerhardt, “Chemical composition of exosporium from spores of Bacillus cereus,” J. Bacteriol. 101, 196-201 (1970).
[PubMed]

J. Cell Biol.

R. S. Thomas, “Ultrastructural localization of mineral matter in bacterial spores by microincineration,” J. Cell Biol. 23, 113-133 (1964).
[CrossRef] [PubMed]

J. Cultural Heritage

V. Lazic, F. Colao, R. Fantoni, A. Palucci, V. Spizzichino, I. Borgia, B. G. Brunetti, and A. Sgamellotti, “Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy,” J. Cultural Heritage 4(Suppl. 1), 303-308 (2003).
[CrossRef]

Spectrochim. Acta Part A

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Spectrochim. Acta Part B

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectrochim. Acta Part B 62, 1443-1447 (2007).
[CrossRef]

J. E. Carranza and D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779-790 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

Other

D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, 3rd ed. (Duxbury, 1998).

C. Bishop, Neural Networks for Pattern Recognition, 1st ed. (Oxford U. Press, 1995).

J. Zupon and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, and M. F. Benedetti, “Ion binding to humic substances,” in Absorption of Metals by Geomedia, 1st ed., E.A.Jenne, ed. (Academic, 1998), pp. 483-520.
[CrossRef]

United States Dairy Export Council, “Skim milk powder--specific grading requirements for skim milk powder” (United States Dairy Export Council, 2006), retrieved 12 Nov. 2007, http://dev.www.usdec.org/products/MilkPowderSpecs/content.cfm?itemnumber=477.

J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed. (Wiley-VCH, 1999).

Y. D. Mattley, “Portable laser induced breakdown spectroscopy (LIBS) bioanalyzer,” Doc. No. AFRL-HE-BR-TR-2004-0133 (Department of Defense, 2004).

E. Gibb Snyder, B. Gullett, S. Ryan, J. Rosati, F. DeLucia, C. Munson, J. Gottfried, and A. Miziolek, “Detection of Bacillus anthracis surrogate spores on building materials by Laser Induced Breakdown Spectroscopy (LIBS)” in Biodefense, 2006).

Counterterrorism and Forensic Science Research Unit, Laboratory Division, United States, and Bioterrorism Preparedness and Response Program, Bioterrorism Rapid Response and Advanced Technology Laboratory, National Center for Infectious Diseases, Centers for Disease Control and Prevention, “Preliminary Findings on the evaluation of hand-held immunoassays for Bacillus anthracis and Yersinia pestis,” in Vol. 5, Issue 1 of Forensic Science Communications (U.S. Department of Justice, Federal Bureau of Investigation, 2003).

U.S. General Services Administration, “GSA policy advisory: guidelines for federal mail centers in the Washington, DC, metropolitan area for managing possible anthrax contamination” (U.S. General Services Administration, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

LIBS experimental setup used in this work.

Fig. 2
Fig. 2

Average spectra of B. atrophaeus spores at different concentrations within the crater.

Fig. 3
Fig. 3

(a) False negative rate for B. atrophaeus spores (Ba) in various mixtures. (b) False negative rate for ovalbumin (ova) in various mixtures.

Fig. 4
Fig. 4

ROC curves for two mixtures of B. atrophaeus and Arizona road dust.

Tables (8)

Tables Icon

Table 1 Key Elements and Their Corresponding Peaks

Tables Icon

Table 2 Regression Statistics for B. atrophaeus and Ovalbumin Linear Regression Models.

Tables Icon

Table 3 NN Residual SSE and Goodness of Fit ( R 2 ) for Both the Training and the Test Sets

Tables Icon

Table 4 Relative Errors of Calibration and Prediction for the NN Models

Tables Icon

Table 5 LODs for Ovalbumin and B. atrophaeus as Determined by the NN Model

Tables Icon

Table 6 Designated Number for Each Type of Sample in the NN Model

Tables Icon

Table 7 Percent False Negatives for B. atrophaeus and Ovalbumin Determined by Using Preliminary Identification Ranges

Tables Icon

Table 8 Percent False Positives for Potentially Interfering Library Compounds

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

20   m
12   h
10 6
Y = β 0 + β 1 X 1 + β 2 X 2 + + β k X k ,
LOD = 3 σ b / m ,
10 6
> 1
< 1
10 6

Metrics