Abstract

We report time-resolved imaging of a laser-ablated carbon plasma plume to investigate the expansion dynamics of C2 and CN in an ambient atmosphere of nitrogen gas at various pressures. An attempt is made to locate C2 and CN species in the carbon plasma plume and correlate them with the results of spectroscopic observations. The ablated C2 and CN species decelerate due to collisions with nitrogen gas and are localized in the slower part (300ns) of the expanding plume. Further expansion (<700ns) of the plasma reveals the concentration of C2 species on the periphery of the plume, whereas CN dominates at the core of the plume. However, at times greater than 700ns, the collisions and recombination processes dominate in the plume and C2 expands slower than CN. The plume dynamics is studied in terms of shock-wave and drag models.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006).
    [CrossRef]
  3. P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
    [CrossRef]
  4. R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995).
    [CrossRef]
  5. A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
    [CrossRef]
  6. X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
    [CrossRef]
  7. S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
    [CrossRef]
  8. S. S. Harilal, “Expansion dynamics of laser-ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103-109 (2001).
    [CrossRef]
  9. S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998).
    [CrossRef]
  10. C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001).
    [CrossRef]
  11. T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
    [CrossRef]
  12. R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
    [CrossRef]
  13. S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
    [CrossRef]
  14. A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004).
    [CrossRef]
  15. D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
    [CrossRef]
  16. V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
    [CrossRef] [PubMed]
  17. J. E. M. Goldsmith and R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67-69 (1986).
    [CrossRef] [PubMed]
  18. U. Westblom and M. Alden, “Simultaneous multiple species detection in a flame using laser-induced fluorescence: errata,” Appl. Opt. 29, 4844-4851 (1990).
    [CrossRef] [PubMed]
  19. R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002).
    [CrossRef]
  20. D. Comelli, C. D'Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43, 2175-2183 (2004).
    [CrossRef] [PubMed]
  21. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
    [CrossRef]
  22. A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999).
    [CrossRef]
  23. D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films 220, 138-145 (1992).
    [CrossRef]
  24. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
    [CrossRef]
  25. R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
    [CrossRef]
  26. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
    [CrossRef]
  27. A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005).
    [CrossRef]
  28. D. B. Geohegan, “Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen,” Appl. Phys. Lett. 60, 2732-2734 (1992).
    [CrossRef]
  29. D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995).
    [CrossRef]
  30. K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
    [CrossRef]
  31. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
    [CrossRef]
  32. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge, 1964).
  33. S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
    [CrossRef]
  34. R. Kelly, “On the dual role of the Knudsen layer an unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047-5056 (1990).
    [CrossRef]
  35. Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
    [CrossRef]
  36. D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975).
    [CrossRef]

2006 (1)

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

2005 (1)

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005).
[CrossRef]

2004 (3)

A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004).
[CrossRef]

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

D. Comelli, C. D'Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43, 2175-2183 (2004).
[CrossRef] [PubMed]

2003 (1)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

2002 (4)

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
[CrossRef]

2001 (3)

S. S. Harilal, “Expansion dynamics of laser-ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103-109 (2001).
[CrossRef]

C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001).
[CrossRef]

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

1999 (4)

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
[CrossRef]

1998 (2)

R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
[CrossRef]

S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998).
[CrossRef]

1997 (1)

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

1996 (2)

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

1995 (2)

R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995).
[CrossRef]

D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995).
[CrossRef]

1993 (2)

Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
[CrossRef]

P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
[CrossRef]

1992 (2)

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films 220, 138-145 (1992).
[CrossRef]

D. B. Geohegan, “Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen,” Appl. Phys. Lett. 60, 2732-2734 (1992).
[CrossRef]

1991 (1)

X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
[CrossRef]

1990 (2)

U. Westblom and M. Alden, “Simultaneous multiple species detection in a flame using laser-induced fluorescence: errata,” Appl. Opt. 29, 4844-4851 (1990).
[CrossRef] [PubMed]

R. Kelly, “On the dual role of the Knudsen layer an unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047-5056 (1990).
[CrossRef]

1986 (1)

1975 (1)

D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975).
[CrossRef]

Abdelli-Messaci, S.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

Abhilasha,

Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
[CrossRef]

P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
[CrossRef]

Alden, M.

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Anderson, R. J. M.

Axford, R. A.

D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975).
[CrossRef]

Bendib, A.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Bulatov, V.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Chen, K. R.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

Chen, X.

X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
[CrossRef]

Colombo, C.

Comelli, D.

Costello, J. T.

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

Cremers, D. A.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).

Cubeddu, R.

D'Andrea, C.

Donato, J. M.

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

Doria, D.

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

Dutouquet, C.

C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001).
[CrossRef]

Dwivedi, R. K.

R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
[CrossRef]

R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995).
[CrossRef]

Ebihara, K.

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Freiwald, D. A.

D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975).
[CrossRef]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

Geohegan, D. B.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995).
[CrossRef]

D. B. Geohegan, “Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen,” Appl. Phys. Lett. 60, 2732-2734 (1992).
[CrossRef]

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films 220, 138-145 (1992).
[CrossRef]

Goldsmith, J. E. M.

Greif, R.

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
[CrossRef]

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge, 1964).

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

S. S. Harilal, “Expansion dynamics of laser-ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103-109 (2001).
[CrossRef]

Hermann, J.

C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001).
[CrossRef]

Iijima, S.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

Ikegami, T.

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Ishibashi, S.

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Jeong, S. H.

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
[CrossRef]

Jones, J. G.

A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
[CrossRef]

Kavanagh, K. D.

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

Kelly, R.

R. Kelly, “On the dual role of the Knudsen layer an unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047-5056 (1990).
[CrossRef]

Kerdja, T.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

Kokai, F.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

Leboeuf, J. N.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

Liu, C. L.

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

Luna, H.

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

Malek, S.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

Mazumder, J.

X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
[CrossRef]

Misra, A.

A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999).
[CrossRef]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006).
[CrossRef]

Moon, J. Y.

S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998).
[CrossRef]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

Narayan, J.

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Noll, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006).
[CrossRef]

Park, S. M.

S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998).
[CrossRef]

Prasad, P. S. R.

P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
[CrossRef]

Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
[CrossRef]

Puretzky, A. A.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995).
[CrossRef]

Purohit, A.

X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).

Russo, R. E.

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
[CrossRef]

Sattmann, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

Schechter, I.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006).
[CrossRef]

Sharma, A. K.

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005).
[CrossRef]

A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004).
[CrossRef]

Shimizu, K.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

Singh, S. P.

R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Sturm, V.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

Takahashi, K.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

Taroni, P.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002).
[CrossRef]

Thareja, R. K.

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005).
[CrossRef]

A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004).
[CrossRef]

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999).
[CrossRef]

R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
[CrossRef]

R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995).
[CrossRef]

P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
[CrossRef]

Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
[CrossRef]

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

Toniolo, L.

Valentini, G.

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Voevodin, A. A.

A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
[CrossRef]

Westblom, U.

Winkelmann, S.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

Wood, R. F.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

Xu, L.

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Yamagata, Y.

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Yudasaka, M.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

Zabinski, J. S.

A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
[CrossRef]

Anal. Chem. (1)

V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. A (2)

F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999).
[CrossRef]

X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991).
[CrossRef]

Appl. Phys. Lett. (3)

A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004).
[CrossRef]

D. B. Geohegan, “Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen,” Appl. Phys. Lett. 60, 2732-2734 (1992).
[CrossRef]

D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995).
[CrossRef]

Appl. Surf. Sci. (2)

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005).
[CrossRef]

S. S. Harilal, “Expansion dynamics of laser-ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103-109 (2001).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999).
[CrossRef]

Int. J. Mod. Phys. B (1)

R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998).
[CrossRef]

J. Anal. At. Spectrom. (1)

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004).
[CrossRef]

J. Appl. Phys. (3)

A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003).
[CrossRef]

D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975).
[CrossRef]

J. Chem. Phys. (2)

R. Kelly, “On the dual role of the Knudsen layer an unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047-5056 (1990).
[CrossRef]

S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998).
[CrossRef]

J. Phys. B (1)

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

J. Phys. D (5)

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999).
[CrossRef]

C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001).
[CrossRef]

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002).
[CrossRef]

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002).
[CrossRef]

J. Vac. Sci. Technol. A (2)

K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996).
[CrossRef]

T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995).
[CrossRef]

Phys. Rev. E (1)

Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997).
[CrossRef]

Phys. Status Solidi A (1)

P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993).
[CrossRef]

Thin Solid Films (1)

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films 220, 138-145 (1992).
[CrossRef]

Other (3)

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge, 1964).

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

C 2 swan bands ( d 3 Π g a 3 Π u , Δ υ = 0 ) in nitrogen ambient of 1.2 mbars at 4 mm . The inset shows the C 2 swan band at 850 ns time delay.

Fig. 2
Fig. 2

CN violet bands ( B 2 Σ + X 2 Σ + , Δ υ = 1 ) in nitrogen ambient of 1.2 mbars at 4 mm . The inset shows the CN violet band at 850 ns time delay.

Fig. 3
Fig. 3

Temporal variation of velocity C 2 ( d 3 Π g a 3 Π u ) obtained by use of spectroscopy and imaging technique.

Fig. 4
Fig. 4

Variation of time of peak intensity with distance ( z t ) of the C 2 ( d 3 Π g a 3 Π u ) and CN ( B 2 Σ + X 2 Σ + ) in 1.2 mbars of N 2 .

Fig. 5
Fig. 5

Plasma images of carbon plasma in (a) 1.2, (b) 12, and (c)  120 mbars of N 2 gas pressure.

Fig. 6
Fig. 6

Probable locations of C 2 and CN in the plume image at different delays of 100, 350, 1000, and 1500 ns at 4 mm .

Fig. 7
Fig. 7

R t plot of plasma in 1.2 mbars of N 2 . The inset shows that plasma expansion follows the shock model before splitting.

Metrics