Abstract

Laser-induced breakdown spectrometry (LIBS) has been successfully developed to quantify thorium (Th) and uranium (U) in solution using membrane-based filter paper as a sample support. The filter paper is easy to handle and the entire analysis process takes only a few minutes for each sample. The developed method provides a practical approach for fast and sensitive determination of actinides in aqueous solutions using LIBS. We obtained calibration curves for U and Th individually as well as as a mixture. We observed that the quantification of trace levels of U in a bulk amount of Th was not possible because of strong spectral interference from Th at the most intense lines of U, but traces of Th in a bulk amount of U could be determined. The concentrations of U and Th in unknown solutions were determined by use of LIBS, and these results agreed to within 4% and 2%, respectively, with the expected values. The limits of detection for Th and U were calculated from the experimental data and were in the range of a few parts per million by weight to a few tens of parts per million by weight.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
    [CrossRef]
  2. I. Ahmed and B. J. Goddard, “An overview of laser induced breakdown spectroscopy,” J. Fiz. Malays. 14, 43-54 (1993).
  3. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation,” Michrochem. J. 50, 218-234 (1994).
    [CrossRef]
  4. K. Song, Y-I. Lee and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997).
    [CrossRef]
  5. L. J. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
    [CrossRef]
  6. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
    [CrossRef]
  7. M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
    [CrossRef]
  8. C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).
  9. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
    [CrossRef]
  10. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
    [CrossRef]
  11. C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259-1267 (1999).
    [CrossRef]
  12. J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
    [CrossRef]
  13. M. Kuzuya and H. Aranami, “Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure,” Spectrochim. Acta Part B 55, 1423-1430 (2000).
    [CrossRef]
  14. M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
    [CrossRef]
  15. D. A. Cremers, L. J. Radziemski, and T. T. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38721-729 (1984).
    [CrossRef]
  16. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser-induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105(1997).
    [CrossRef]
  17. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
    [CrossRef] [PubMed]
  18. J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
    [CrossRef]
  19. C. W. Ng, W. F. Ho, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties,” Appl. Spectrosc. 51, 976-983 (1997).
    [CrossRef]
  20. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312-1319 (2001).
    [CrossRef]
  21. D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
    [CrossRef]
  22. D. E. Poulain and D. R. Alexander, “Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 49, 569-579 (1995).
    [CrossRef]
  23. H. A. Archontaki and S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741-746 (1988).
    [CrossRef]
  24. R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226-1236 (1999).
    [CrossRef]
  25. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
    [CrossRef]
  26. L. M. Berman and P. J. Wolf, “Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438-443 (1998).
    [CrossRef]
  27. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
    [CrossRef]
  28. T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
    [CrossRef]
  29. W. F. Ho, C. W. Ng, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength,” Appl. Spectrosc. 51, 87-91(1997).
    [CrossRef]
  30. N. H. Cheung and E. S. Yeung, “Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown,” Appl. Spectrosc. 47882-886 (1993).
    [CrossRef]
  31. N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929-936 (1994).
    [CrossRef] [PubMed]
  32. V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143-162(1992).
    [CrossRef]
  33. P. Fichet, P. Mauchien, and C. Moulin, “Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1111-1117(1999).
    [CrossRef]
  34. R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
    [CrossRef]
  35. J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042-1048 (1987).
    [CrossRef]
  36. http://www.arl.army.mil/www/default.cfm?Action=247&page=250
  37. NIST, Basic atomic spectroscopic data, http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm
  38. Cellulose Filters, Whatman, www.whatman.com/CelluloseFilters.aspx

2006 (1)

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

2005 (1)

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

2004 (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
[CrossRef]

2002 (3)

L. J. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

2001 (3)

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312-1319 (2001).
[CrossRef]

2000 (2)

M. Kuzuya and H. Aranami, “Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure,” Spectrochim. Acta Part B 55, 1423-1430 (2000).
[CrossRef]

M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

1999 (3)

1998 (1)

1997 (5)

1996 (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

1995 (2)

1994 (3)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation,” Michrochem. J. 50, 218-234 (1994).
[CrossRef]

1993 (2)

I. Ahmed and B. J. Goddard, “An overview of laser induced breakdown spectroscopy,” J. Fiz. Malays. 14, 43-54 (1993).

N. H. Cheung and E. S. Yeung, “Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown,” Appl. Spectrosc. 47882-886 (1993).
[CrossRef]

1992 (1)

V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143-162(1992).
[CrossRef]

1989 (1)

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

1988 (1)

1987 (1)

1984 (1)

Aguilera, J. A.

Ahmed, I.

I. Ahmed and B. J. Goddard, “An overview of laser induced breakdown spectroscopy,” J. Fiz. Malays. 14, 43-54 (1993).

Alexander, D. R.

Aragón, C.

Aranami, H.

M. Kuzuya and H. Aranami, “Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure,” Spectrochim. Acta Part B 55, 1423-1430 (2000).
[CrossRef]

Arca, G.

Archontaki, H. A.

Berman, L. M.

Bertuccelli, D.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

Bertuccelli, G.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Buckley, S. G.

Cáceres, J. O.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Charfi, B.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Cheung, N. H.

Cielo, P.

Ciucci, A.

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

Cremers, D. A.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

Crouch, S. R.

D'Angelo, C.

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).

D'Angelo, C. A.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Díaz, D. M.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Fichet, P.

Fisher, B. T.

Gamal, Y. E. E-D.

M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Goddard, B. J.

I. Ahmed and B. J. Goddard, “An overview of laser induced breakdown spectroscopy,” J. Fiz. Malays. 14, 43-54 (1993).

Gomba, J. M.

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).

Hahn, D. W.

Hanafi, M.

M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Harith, M. A.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Ho, W. F.

Householder, P. A.

Iriarte, D.

C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).

Johnsen, H. A.

Joseph, M. R.

V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143-162(1992).
[CrossRef]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Kitamori, T.

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Kompa, K. L.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

Kuzuya, M.

M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
[CrossRef]

M. Kuzuya and H. Aranami, “Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure,” Spectrochim. Acta Part B 55, 1423-1430 (2000).
[CrossRef]

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

Lee, Y-I.

K. Song, Y-I. Lee and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

López, J. Tornero

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Loree, T. T.

Majidi, V.

V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143-162(1992).
[CrossRef]

Maruyama, N.

M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
[CrossRef]

Matsui, T.

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

Mauchien, P.

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Moulin, C.

Murakami, M.

M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
[CrossRef]

Ng, C. W.

Niessner, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

Omar, M. M.

M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser-induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105(1997).
[CrossRef]

Peñalba, F.

Poulain, D. E.

Radziemski, L. J.

L. J. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation,” Michrochem. J. 50, 218-234 (1994).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. T. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38721-729 (1984).
[CrossRef]

Rastelli, S.

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

Sakagami, M.

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

Sawada, T.

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

Schechter, I.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Schroder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Sneddon, J.

K. Song, Y-I. Lee and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

Song, K.

K. Song, Y-I. Lee and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

Telle, H. H.

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Ticich, T. M.

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser-induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105(1997).
[CrossRef]

Ureña, A. González

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

Vander Wal, R. L.

Wachter, J. R.

West, J. R.

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

Wolf, P. J.

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Yeung, E. S.

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

N. H. Cheung and E. S. Yeung, “Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown,” Appl. Spectrosc. 47882-886 (1993).
[CrossRef]

Anal. Chem. (2)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964-2975 (1994).
[CrossRef]

N. H. Cheung and E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

Appl. Spectrosc. (14)

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312-1319 (2001).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226-1236 (1999).
[CrossRef]

C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259-1267 (1999).
[CrossRef]

P. Fichet, P. Mauchien, and C. Moulin, “Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1111-1117(1999).
[CrossRef]

L. M. Berman and P. J. Wolf, “Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438-443 (1998).
[CrossRef]

D. E. Poulain and D. R. Alexander, “Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 49, 569-579 (1995).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

N. H. Cheung and E. S. Yeung, “Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown,” Appl. Spectrosc. 47882-886 (1993).
[CrossRef]

J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042-1048 (1987).
[CrossRef]

H. A. Archontaki and S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741-746 (1988).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. T. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38721-729 (1984).
[CrossRef]

C. W. Ng, W. F. Ho, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties,” Appl. Spectrosc. 51, 976-983 (1997).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser-induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105(1997).
[CrossRef]

W. F. Ho, C. W. Ng, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength,” Appl. Spectrosc. 51, 87-91(1997).
[CrossRef]

Appl. Spectrosc. Rev. (1)

K. Song, Y-I. Lee and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

Chem. Lett. (1)

T. Kitamori, T. Matsui, M. Sakagami, and T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205-2208 (1989).
[CrossRef]

Crit. Rev. Anal. Chem. (2)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143-162(1992).
[CrossRef]

Fresenius J. Anal. Chem. (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

J. Fiz. Malays. (1)

I. Ahmed and B. J. Goddard, “An overview of laser induced breakdown spectroscopy,” J. Fiz. Malays. 14, 43-54 (1993).

J. Pharm. Biomed. Anal. (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277-284 (2004).
[CrossRef] [PubMed]

Michrochem. J. (1)

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation,” Michrochem. J. 50, 218-234 (1994).
[CrossRef]

Radiat. Phys. Chem. (1)

M. Hanafi, M. M. Omar, and Y. E. E-D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Spectrochim. Acta Part B (8)

J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

L. J. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

J. M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminum--lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta Part B 56, 695-705 (2001).
[CrossRef]

M. Kuzuya and H. Aranami, “Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure,” Spectrochim. Acta Part B 55, 1423-1430 (2000).
[CrossRef]

M. Kuzuya, M. Murakami, and N. Maruyama, “Quantitative analysis of ceramics by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 58, 957-965 (2003).
[CrossRef]

Spectrochimica Acta Part B (1)

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochimica Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Other (4)

C. D'Angelo, J. M. Gomba, D. Iriarte, and G. Bertuccelli, “Trace element analysis in water by LIBS technique,” III Iberoamerican Conference on Optics 98, 534-541 (SPIE, 1999).

http://www.arl.army.mil/www/default.cfm?Action=247&page=250

NIST, Basic atomic spectroscopic data, http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm

Cellulose Filters, Whatman, www.whatman.com/CelluloseFilters.aspx

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a laser-induced breakdown spectrometry system.

Fig. 2
Fig. 2

Carbon emission lines from Whatman-42 membrane based filter paper.

Fig. 3
Fig. 3

Emission spectra of U and Th obtained by LIBS under identical conditions of analysis.

Fig. 4
Fig. 4

Reproducibility of the Th(II) 401.913 nm emission line from ten measurements carried out using independent filter papers under identical experimental conditions. The horizontal straight line represents the mean value and the inset shows the peak region used for integration.

Fig. 5
Fig. 5

Calibration curve of (a) U and (b) Th in aqueous solution fitted with a polynomial equation. Error bars represent the standard deviation from multiple measurements at each concentration value.

Fig. 6
Fig. 6

Calibration curve of the U-Th mixture in aqueous solution. Error bars show standard deviation from multiple measurements at each value.

Tables (5)

Tables Icon

Table 1 Characteristics of Spectral lines Used for LIBS Analysis of Uranium and Thorium [37] a

Tables Icon

Table 2 Trace Elements in the Whatman-42 Membrane Filter Paper a

Tables Icon

Table 3 Fitted Parameters Obtained from Calibration Curves for Uranium and Thorium Using Polynomial Equation y = a + b x + c x 2

Tables Icon

Table 4 LODs for Uranium and Thorium

Tables Icon

Table 5 Comparison of Analytical Results of LIBS with Expected Values

Metrics