Abstract

The performance of a man-portable laser induced breakdown spectrometer was evaluated for the detection of biological powders on indoor office surfaces and wipe materials. Identification of pure unknown powders was performed by comparing against a library of spectra containing biological agent surrogates and confusant materials, such as dusts, diesel soot, natural and artificial sweeteners, and drink powders, using linear correlation analysis. Simple models constructed using a second technique, partial least squares discriminant analysis, successfully identified Bacillus subtilis (BG) spores on wipe materials and office surfaces. Furthermore, these models were able to identify BG on materials not used in the training of the model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
    [CrossRef]
  2. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  3. H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
    [CrossRef]
  4. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
    [CrossRef]
  5. J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
    [CrossRef] [PubMed]
  6. M. Bengtsson, R. Gronlund, M. Lundqvist, A. Larsson, S. Kroll, and S. Svanberg, “Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces,” Appl. Spectrosc. 60, 1188-1191(2006).
    [CrossRef] [PubMed]
  7. R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning,” Opt. Lett. 30, 2882-2884(2005).
    [CrossRef] [PubMed]
  8. J.P.Singh and S.N.Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  9. A.Miziolek, V.Palleschi, and I.Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
    [CrossRef]
  10. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  11. M. Sabasi and R. Russo, eds., 4th International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006) Special IssueSpectrochim. Acta, Part B 62, 1285-1618(2006).
    [CrossRef]
  12. R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
    [CrossRef] [PubMed]
  13. C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
    [CrossRef]
  14. A. C. Samuels, F. C. DeLucia Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  15. S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
    [CrossRef]
  16. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
    [CrossRef]
  17. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef] [PubMed]
  18. E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
    [CrossRef] [PubMed]
  19. F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
    [CrossRef]
  20. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
    [CrossRef]
  21. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
    [CrossRef]
  22. M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
    [CrossRef]
  23. R. G. Brereton, Applied Chemometrics for Scientists (Wiley, 2007).
    [CrossRef]

2008 (2)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

2007 (5)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
[CrossRef]

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

2006 (6)

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
[CrossRef] [PubMed]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

M. Bengtsson, R. Gronlund, M. Lundqvist, A. Larsson, S. Kroll, and S. Svanberg, “Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces,” Appl. Spectrosc. 60, 1188-1191(2006).
[CrossRef] [PubMed]

M. Sabasi and R. Russo, eds., 4th International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006) Special IssueSpectrochim. Acta, Part B 62, 1285-1618(2006).
[CrossRef]

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

2005 (3)

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning,” Opt. Lett. 30, 2882-2884(2005).
[CrossRef] [PubMed]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

2003 (3)

Azarm, A.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Bengtsson, M.

Bousquet, B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
[CrossRef]

Brereton, R. G.

R. G. Brereton, Applied Chemometrics for Scientists (Wiley, 2007).
[CrossRef]

Buckley, S. G.

Bylesjö, M.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Canioni, L.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
[CrossRef]

Chin, S. L.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Cloarec, O.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Daigle, J. F.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

De Lucia, F.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

De Lucia,, F. C.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Diedrich, J.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

Gibb-Snyder, E.

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

Gronlund, R.

Grönlund, R.

Gullett, B.

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

Holmes, E.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Hybl, J. D.

Kamali, Y.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Kroll, S.

LaPointe, A.

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

Larsson, A.

Laserna, J. Javier

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Lithgow, G. A.

Liu, W.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Lundqvist, M.

Mathieu, P.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

McNesby, K. L.

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Méjean, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, Jr, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

Nicholson, J. K.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Oudejans, L.

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Palchaudhuri, S.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Rantalainen, M.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Rehse, S. J.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

Rose, J.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Roy, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Russo, R.

M. Sabasi and R. Russo, eds., 4th International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006) Special IssueSpectrochim. Acta, Part B 62, 1285-1618(2006).
[CrossRef]

Ryan, S.

Sabasi, M.

M. Sabasi and R. Russo, eds., 4th International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006) Special IssueSpectrochim. Acta, Part B 62, 1285-1618(2006).
[CrossRef]

Samuels, A. C.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Simard, J. R.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Simard, P. T.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Sirven, J. B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
[CrossRef]

Svanberg, S.

Touati, A.

Trygg, J.

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Winkel, R. J.

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

Xu, H. L.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

R. S. Harmon, F. C. DeLucia, Jr., A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Appl. Spectrosc. (4)

IEEE Sens. J. (1)

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689(2005).
[CrossRef]

J. Anal. At. Spectrom. (2)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

J. Appl. Phys. (1)

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

J. Chemom. (2)

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 20, 341-351 (2006).
[CrossRef]

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Opt. Lett. (1)

Spectrochim. Acta, Part B (5)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta, Part B 62, 1405-1411 (2007).
[CrossRef]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta, Part B 62, 1582-1589 (2007).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169-1176 (2007).
[CrossRef]

C. A. Munson, F. C. De Lucia, Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, Part B 60, 1217-1224 (2005).
[CrossRef]

M. Sabasi and R. Russo, eds., 4th International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006) Special IssueSpectrochim. Acta, Part B 62, 1285-1618(2006).
[CrossRef]

Other (4)

R. G. Brereton, Applied Chemometrics for Scientists (Wiley, 2007).
[CrossRef]

J.P.Singh and S.N.Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

A.Miziolek, V.Palleschi, and I.Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University Press, 2006).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of single-shot BG LIBS spectra collected on the field-man-portable MP-LIBS and a laboratory-based LIBS 2000 + system. The increase in background intensity observed in the LIBS 2000 + BG spectrum may be attributed to the higher pulse energy and shorter gate delay used while collecting data with the LIBS 2000 + system.

Fig. 2
Fig. 2

Single-shot MP-LIBS spectra of BG and several potential confusants prepared on double-sided tape. Bt is a spectrum of the surrogate Bacillus thuringienesis.

Fig. 3
Fig. 3

Single shot MP-LIBS spectra of a clean and BG-contaminated floppy disk surface. The spectrum of pure BG provided for comparison was collected on double-sided tape. Enlargements of regions A, B, and C of the clean and contaminated disk surface are shown at the bottom of the figure.

Fig. 4
Fig. 4

(a) Linear correlation results of clean and contaminated office surfaces correlated to BG spectra in the library. Error bars represent one standard deviation. (b) Linear correlation of BG-contaminated notebook spectra with powders from the spectral library.

Fig. 5
Fig. 5

PLS-DA model for the identification of BG on office surfaces. Each symbol represents spectral intensity information collected from a single LIBS spectrum. Closed symbols are spectra used to train the model; open symbols are test cases evaluated by the model. Spectra used in the model construction are as follows: 1–30 BG, 31–50 AA, 51–70 HD, 71–175 clean office surfaces, and 176–220 office surfaces contaminated with BG. Spectra in the test set were 221–230 BG, 231–235 AA, 236–240 HD, 241–290 clean office surfaces, and 291–314 office surfaces contaminated with BG. Symbols for the clean and contaminated surfaces are indicated in the legend.

Fig. 6
Fig. 6

Single-shot LIBS spectra of BG and wipe materials. (a) Single-shot spectra of clean tack cloth and tack cloth used to sample BG. (b) Single-shot spectra of a clean paper towel and a paper towel used to sample BG. The pure BG spectra in (a) and (b) were samples on double-sided tape.

Fig. 7
Fig. 7

PLS-DA model for the identification of BG on selected wipe materials. Each symbol represents spectral intensity information collected from a single LIBS spectrum. Closed symbols are spectra used to train the model; open symbols are test cases evaluated by the model. Spectra used in the model construction are as follows: 1–29 BG, 30–49 AA, 50–69 HD, 70–154 clean wipe materials, and 155–292 wipe materials used to sample BG. Spectra in the test set were: 293–302 BG, 303–307 AA, 308–312 HD, 313–332 clean wipe materials, and 333–377 wipe materials used to sample BG. Symbols for the clean and contaminated wipe materials are indicated in the legend.

Tables (2)

Tables Icon

Table 1 Elemental Lines Selected for the Construction of PLS-DA Models

Tables Icon

Table 2 Percentage of Sample Test Spectra Identified Against Library Powder Sample Spectra a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = i = 1 n ( x i x ¯ ) ( y i y ¯ ) i = 1 n ( x i x ¯ ) 2 i = 1 n ( y i y ¯ ) 2 ,

Metrics