Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid

Not Accessible

Your library or personal account may give you access

Abstract

A study of aqueous solutions of chromium using single and double pulse laser-induced breakdown spectroscopy (LIBS) is presented. Three atomic emission lines show enhancement in emission under dual pulse LIBS excitation. The temporal evolution of line emission indicates that a shock wave front produced by the first laser pulse plays an important role in determining the decay rate of intensity by excitation transfer in single pulse LIBS and by plasma confinement in double pulse LIBS. The ratio of emission in dual pulse LIBS to single pulse LIBS with time shows a linear increase followed by the onset of saturation. A theoretical calculation of the enhancement is found to be in qualitative agreement with the experimental results, suggesting that material ablation in dual pulse LIBS should be 3.5times that of single pulse LIBS. There is indication that the increase in ablation and subsequent enhancement in emission may be due to the rarefied gas density inside the region enclosed by the shock wave produced by the first laser pulse. The limit of detection of Cr in aqueous solution has been improved by an order of magnitude with double pulse LIBS.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical model for double pulse laser-induced breakdown spectroscopy

Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh
Appl. Opt. 47(31) G30-G37 (2008)

Study of laser-induced breakdown emission from liquid under double-pulse excitation

Virendra N. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2094-2101 (2003)

Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses

Akshaya Kumar, Fang Y. Yueh, and Jagdish P. Singh
Appl. Opt. 42(30) 6047-6051 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved