Abstract

A commercially available chemical identification taggant that imparts a unique elemental fingerprint to any object and can be analytically distinguished from billions of possible combinations has been developed. The liquid tag is easily applied and, once dry, can be removed and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to determine the combination of elements present in the sample. The current study investigates the use of laser-induced breakdown spectroscopy (LIBS) as an alternative, and perhaps more practical, analysis scheme to LA-ICP-MS for this taggant. LIBS provides excellent discrimination potential, sensitivity, and repeatability of analysis for up to 17 rare-earth elements using a Nd:YAG 266nm or 1064nm laser and an intensified CCD detector.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.smartwater.com.
  2. F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
    [CrossRef]
  3. C. R. Dockery and S. R. Goode, “Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter,” Appl Opt. 42, 6153-6158 (2003).
    [CrossRef] [PubMed]
  4. J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).
  5. M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection and mapping of latent fingerprints by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 1322-1327 (2006).
    [CrossRef] [PubMed]
  6. C. M. Bridge, J. Powell, K. L. Steele, and M. E. Sigman, “Forensic comparative glass analysis by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 1419-1425(2007).
    [CrossRef]
  7. C. M. Bridge, J. Powell, K. L. Steele, M. Williams, J. M. MacInnis, and M. E. Sigman, “Characterization of automobile float glass with laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 60, 1181-1187 (2006).
    [CrossRef] [PubMed]
  8. M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
    [CrossRef]
  9. http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  10. R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
    [CrossRef] [PubMed]

2007

C. M. Bridge, J. Powell, K. L. Steele, and M. E. Sigman, “Forensic comparative glass analysis by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 1419-1425(2007).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

2006

2003

F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef]

C. R. Dockery and S. R. Goode, “Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter,” Appl Opt. 42, 6153-6158 (2003).
[CrossRef] [PubMed]

Almirall, J. R.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

Andre, N.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Bridge, C. M.

Castro, W.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef]

Dockery, C. R.

C. R. Dockery and S. R. Goode, “Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter,” Appl Opt. 42, 6153-6158 (2003).
[CrossRef] [PubMed]

Ebinger, M.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Fedosejevs, R.

Goode, S. R.

C. R. Dockery and S. R. Goode, “Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter,” Appl Opt. 42, 6153-6158 (2003).
[CrossRef] [PubMed]

Gornushkin, I.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef]

Harris, R.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Labbe, N.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

LaPoite, A.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

MacInnis, J. M.

Martin, M. Z.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

McNesby, K. L.

Miziolek, A. W.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef]

Powell, J.

Sigman, M. E.

Steele, K. L.

Taschuk, M. T.

Tsui, Y. Y.

Umpierrez, S.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

Williams, M.

Winefordner, J.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

Winkel, R. J.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

F. C. DeLucia. Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef]

Wullschleger, S. D.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Anal. Bioanal. Chem.

R. S. Harmon, F. C. DeLucia, A. LaPoite, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140-1148 (2006).
[CrossRef] [PubMed]

Appl Opt.

C. R. Dockery and S. R. Goode, “Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter,” Appl Opt. 42, 6153-6158 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Spectrochim. Acta Part B

C. M. Bridge, J. Powell, K. L. Steele, and M. E. Sigman, “Forensic comparative glass analysis by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 1419-1425(2007).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Other

http://physics.nist.gov/PhysRefData/ASD/lines_form.html.

J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657-666 (2005).

http://www.smartwater.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Discrimination of two taggants: sample 1 (red, middle curves, Eu, Ho, Lu, Y) and Ssample 2 (black highest curves, Eu, Ho, Lu, Dy) using 1064 nm laser excitation. Both samples show emission peaks for (a) Ho (II) at 389.10 nm , (b) Eu (II) at 420.50 nm , and (c) Lu (II) at 547.67 nm , indicating the presence of these elements in both samples, and clearly not in the blank polymer (gray, lowest curves). An emission peak for (d) Dy (II) at 353.17 nm was observed only with sample 2, and likewise an emission peak for (e) Y (II) at 437.49 nm was observed only in sample 1, thus allowing the discrimination of these two samples.

Fig. 2
Fig. 2

(a) SEM photo of LIBS crater on taggant surface using the 1064 nm laser (15 accumulations at 70 mJ / pulse ). A pellet created with recovered SmartWater IndSol Tracer pieces viewed under (b) normal and (c) UV lighting.

Tables (4)

Tables Icon

Table 1 Liquid Concentration of Elements in Original Taggant Formulations a Analyzed by LA-ICP-MS and Subsequent Concentration Used for LIBS

Tables Icon

Table 2 Element Emission Wavelengths [9] Identified for Use as Discriminatory Peaks with 1064 nm Analysis

Tables Icon

Table 3 Signal-to-noise Ratio and Corresponding Dry Weight Concentration Observed for Each Element by Using 1064 nm a

Tables Icon

Table 4 Laser Ablation Parameters Selected for Tracer Analysis, Single Line Scan

Metrics