Abstract

A comprehensive investigation of laser-induced breakdown spectroscopy (LIBS) at 1.500μm of residues of six organic compounds (anthracene, caffeine, glucose, 1,3-dinitrobenzene, 2,4-dinitrophenol, and 2,4-dinitrotoluene) on aluminum substrates is presented and compared with LIBS at the Nd:YAG fundamental wavelength of 1.064μm. The overall emission intensities were found to be smaller at 1.500μm than at 1.064μm, and the ratios of C2 and CN molecular emissions to the H atomic emissions were observed to be less. Possible reasons for the observed differences in LIBS at 1.064μm versus 1.500μm are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006).
    [CrossRef]
  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  3. American National Standards Institute, American Standard for Safe Use of Lasers (Laser Institute of America, 2000).
  4. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
    [CrossRef]
  5. D.E.Gray, ed., American Institute of Physics Handbook (McGraw-Hill, 1972).
  6. F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
    [CrossRef]
  7. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
    [CrossRef]
  8. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42, 2835-2842 (2003).
    [CrossRef] [PubMed]
  9. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavrromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-indeuced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456-461 (1998).
    [CrossRef]
  10. M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
    [CrossRef]
  11. L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
    [CrossRef]
  12. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003).
    [CrossRef] [PubMed]
  13. S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
    [CrossRef]
  14. L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).
  15. T. N. Piehler, F. C. DeLucia Jr., C. A. Munson, B. E. Homan, A. W. Miziolek, and K. L. McNesby, “Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases,” Appl. Opt. 44, 3654-3660(2005).
    [CrossRef] [PubMed]
  16. NIST Atomic Spectra Database, version 3 NIST Atomic Spectra Database, version 3. http://physics.nist.gov/PhysRefData/ASD.
  17. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  18. C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
    [CrossRef]
  19. S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
    [CrossRef]
  20. J. F. Ready, Effects of High Power Laser Radiation (Academic, 1971).
  21. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
    [CrossRef]

2007

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

2006

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

2005

2004

S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
[CrossRef]

2003

2002

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

2001

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

1999

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

1998

1973

C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
[CrossRef]

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

Bar, I.

Baudelet, M.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Bauer, C.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Béchard, S.

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

Boueri, M.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Buckley, S. G.

Burgmeier, J.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Cooper, J.

C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
[CrossRef]

Couris, S.

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Dagdigian, P. J.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

T. N. Piehler, F. C. DeLucia Jr., C. A. Munson, B. E. Homan, A. W. Miziolek, and K. L. McNesby, “Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases,” Appl. Opt. 44, 3654-3660(2005).
[CrossRef] [PubMed]

Ferioli, F.

Fotakis, C.

Geiser, P.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Gottfried, J. L.

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

Griem, H. R.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

Häkkänen, H.

S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
[CrossRef]

Hatziapostolou, A.

Holl, G.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Homan, B. E.

Kaski, S.

S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
[CrossRef]

Korppi-Tommola, J.

S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
[CrossRef]

Krause, H.

Kwong, E.

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Larrauri, E.

Mao, S. S.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Mao, X.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Mavrromanolakis, A.

McNesby, K. L.

Miguel, R.

Miziolek, A. W.

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

T. N. Piehler, F. C. DeLucia Jr., C. A. Munson, B. E. Homan, A. W. Miziolek, and K. L. McNesby, “Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases,” Appl. Opt. 44, 3654-3660(2005).
[CrossRef] [PubMed]

Mönch, I.

Munson, C. A.

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

T. N. Piehler, F. C. DeLucia Jr., C. A. Munson, B. E. Homan, A. W. Miziolek, and K. L. McNesby, “Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases,” Appl. Opt. 44, 3654-3660(2005).
[CrossRef] [PubMed]

Noll, R.

Nusca, M. J.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

Piehler, T. N.

Piscitelli, V.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Portnov, A.

Puzinauskas, P. V.

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Ready, J. F.

J. F. Ready, Effects of High Power Laser Radiation (Academic, 1971).

Rosenwaks, S.

Russo, R. E.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Sabsabi, M.

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

Sattmann, R.

Schade, W.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Sing, R.

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

Smith, B. W.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

Smith, E. W.

C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

St.-Onge, L.

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

Sun, Q.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

Tran, M.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

Vadas, E. B.

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Vidal, C. R.

C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
[CrossRef]

Winefordner, J. D.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

Yu, J.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. A

L. St.-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913-S916(1999).

Appl. Phys. B

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulse laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Appl. Spectrosc.

Astrophys. J. Suppl. Ser.

C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark-broadening tables,” Astrophys. J. Suppl. Ser. 25, 37-136(1973).
[CrossRef]

J. Anal. At. Spectrom.

S. Kaski, H. Häkkänen, and J. Korppi-Tommola, “Determination of Cl/C and Br/C ratios in pure organic solids using laser-induced plasma spectroscopy in near vacuum ultraviolet,” J. Anal. At. Spectrom. 19, 474-478 (2004).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C∶H∶O∶N ratios in solid organic compounds in laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628-632 (2001).
[CrossRef]

J. Phys. B

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999).
[CrossRef]

Spectrochim. Acta Part B

F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62, 1329-1334 (2007).
[CrossRef]

L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclomethylenenitramine (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
[CrossRef]

Other

D.E.Gray, ed., American Institute of Physics Handbook (McGraw-Hill, 1972).

A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

American National Standards Institute, American Standard for Safe Use of Lasers (Laser Institute of America, 2000).

J. F. Ready, Effects of High Power Laser Radiation (Academic, 1971).

NIST Atomic Spectra Database, version 3 NIST Atomic Spectra Database, version 3. http://physics.nist.gov/PhysRefData/ASD.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus. PD denotes photodiode.

Fig. 2
Fig. 2

Survey single-shot LIBS spectra of 2,4-DNT residues (average surface concentration 75 μg / cm 2 ) on aluminum foil for irradiation at (a) 1.064 and (b)  1.500 μm . Prominent emission features are marked: Al, 308 and 394 nm ; C, 248 nm ; H, 656 nm ; CN B X Δ v = 0 sequence, 388 nm ; C 2 , d a Δ v = + 1 , 0, 1 sequences at 474, 516, and 564 nm , respectively. The lines in the 700 800 nm spectral range are mainly due to the argon bath gas.

Fig. 3
Fig. 3

Ratios of C, O, and N line intensities (peak heights) to the H atomic line intensity for LIBS of organic residues on aluminum foil substrates. The spectra were recorded under identical conditions except for the irradiation wavelengths, which are indicated at the top of the sets of panels. The two plotted points for each compound represent means of the intensity ratios for two sets of 25 single-shot spectra; the error bars are the standard deviations of the mean.

Fig. 4
Fig. 4

Ratios of C 2 and CN (0,0) band head intensities to the H atomic line intensity for LIBS of organic residues on aluminum foil substrates. The spectra were recorded under identical conditions except for the irradiation wavelengths, which are indicated at the top of the sets of panels. The two plotted points for each compound represent means of the intensity ratios for two sets of 25 single-shot spectra; the error bars are the standard deviations of the mean.

Fig. 5
Fig. 5

Intensities of the H atomic line and the C 2 and CN (0,0) band heads for LIBS of organic residues on aluminum foil substrates. The spectra were recorded under identical conditions except for the irradiation wavelengths, which are indicated at the top of the sets of panels. The two plotted points for each compound represent means of the intensity ratios for two sets of 25 single-shot spectra; the error bars are the standard deviations of the mean.

Fig. 6
Fig. 6

Profiles of the H atomic line at 656.3 nm , averaged over 25 single-shot spectra, for LIBS at 1.064 μm (solid lines) and 1.500 μm (dotted lines) of anthracene and DNT residues on aluminum foil substrates.

Tables (3)

Tables Icon

Table 1 Molecular Formulas and Molar Ratios for the Organic Compounds Investigated

Tables Icon

Table 2 Spectral Transitions Used for Quantitative Analysis of LIBS Spectra of Organic Compounds

Tables Icon

Table 3 Temperatures Determined from Relative Intensities of the Al Atomic 394.40 and 308.22 nm Lines for LIBS Plasmas

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = g 1 A 1 λ 2 g 2 A 2 λ 1 exp ( E 1 E 2 k T ) ,

Metrics