Abstract

Laser-induced breakdown spectroscopy (LIBS) has been identified as an analytical chemistry technique suitable for field use. We use double pulse LIBS to detect five analytes (sodium, manganese, calcium, magnesium, and potassium) that are of key importance in understanding the chemistry of deep ocean hydrothermal vent fluids as well as mixtures of vent fluids and seawater. The high pressure aqueous environment of the deep ocean is simulated in the laboratory, and the key double pulse experimental parameters (laser pulse energies, gate delay time, and interpulse delay time) are studied at pressures up to 2.76×107Pa. Each element is found to have a unique optimal set of parameters for detection. For all pressures and energies, a short (100ns) gate delay is necessary. As pressure increases, a shorter interpulse delay is needed and the double pulse conditions effectively become single pulse for both the 1.38×107Pa and the 2.76×107Pa conditions tested. Calibration curves reveal the limits of detection of the elements (5000ppmMg, 500ppmK, 500ppmCa, 1000ppmMn, and 50ppmNa) in aqueous solutions at 2.76×107Pa for the experimental setup used. When compared to our previous single pulse LIBS work for Ca, Mn, and Na, the use of double pulse LIBS for analyte detection in high pressure aqueous solutions did not improve the limits of detection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
    [CrossRef]
  2. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
    [CrossRef] [PubMed]
  3. Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
    [CrossRef]
  4. G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
    [CrossRef]
  5. R. Brennetot, J. L. Lacour, E. Vors, A. Rivoallan, D. Vailhen, and S. Maurice, “Mars analysis by laser-induced breakdown spectroscopy (MALIS): influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs,” Appl. Spectrosc. 57, 744-752 (2003).
    [CrossRef] [PubMed]
  6. A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration.,” Appl. Spectrosc. 54, 331-340 (2000).
    [CrossRef]
  7. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
    [CrossRef]
  8. C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
    [CrossRef]
  9. J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
    [CrossRef]
  10. K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-247.
    [CrossRef]
  11. K. L. Von Damm. “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222(2000).
    [CrossRef]
  12. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
    [CrossRef]
  13. R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
    [PubMed]
  14. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085-6093(2003).
    [CrossRef] [PubMed]
  15. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515 (2007).
    [CrossRef] [PubMed]
  16. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007).
    [CrossRef] [PubMed]
  17. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
    [CrossRef] [PubMed]
  18. A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
    [CrossRef]
  19. A. P. M. Michel and A. D. Chave, “Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy,” Appl. Opt. 47, G122-G130 (2008).
    [CrossRef]
  20. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
    [CrossRef]
  21. C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
    [CrossRef]
  22. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
    [CrossRef]
  23. A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
    [CrossRef]
  24. A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
    [CrossRef]
  25. A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
    [CrossRef]
  26. A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
    [CrossRef]
  27. S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
    [CrossRef]
  28. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
    [CrossRef]
  29. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
    [CrossRef] [PubMed]
  30. A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378(2007).
    [CrossRef]
  31. M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, and S. M. Angel, “Dependence of emission intensity on bubble dynamics in dual-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” submitted to Appl. Spectrosc.

2008 (1)

2007 (5)

A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515 (2007).
[CrossRef] [PubMed]

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007).
[CrossRef] [PubMed]

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378(2007).
[CrossRef]

2006 (4)

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
[CrossRef] [PubMed]

2005 (4)

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

2004 (4)

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
[CrossRef] [PubMed]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

2003 (2)

2000 (2)

A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration.,” Appl. Spectrosc. 54, 331-340 (2000).
[CrossRef]

K. L. Von Damm. “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222(2000).
[CrossRef]

1997 (3)

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
[CrossRef]

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

1996 (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

1994 (1)

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

1984 (1)

Ahlers, B.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[CrossRef]

Angel, S. M.

Arp, Z. A.

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
[CrossRef] [PubMed]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Brennetot, R.

Butterfield, D. B.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Capitelli, M.

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

Casavola, A.

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

Chave, A. D.

Colao, F.

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

Colonna, G.

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

Courrèges-Lacoste, G. B.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[CrossRef]

Court, R.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Cremers, D.

Cremers, D. A.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
[CrossRef] [PubMed]

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

De Pascale, O.

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

DellAglio, M.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

Dell'Aglio, M.

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Fantoni, R.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

Feely, R. A.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Ferris, M.

Ferris, M. J.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
[CrossRef]

Fichet, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Garen, W.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

German, C. R.

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[CrossRef]

Haisch, C.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Harris, R. D.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Jenkins, T. F.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Knight, A.

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Koch, S.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Lacour, J. L.

Lacour, J.-L.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Lawrence-Snyder, M.

Lazic, V.

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

Liermann, J.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Longo, S.

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

Loree, T. R.

Manhes, G.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Massoth, G. J.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Mauchien, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Maurice, S.

McManus, C. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

McMillan, N. J.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Metz, S.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Michel, A. P. M.

Miziolek., A.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Neu, W.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Niessner, R.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Noll, R.

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[CrossRef] [PubMed]

Oschwald, D. M.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Panne, U.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Parker, G. R.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Pearman, W.

Pearman, W. F.

M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, and S. M. Angel, “Dependence of emission intensity on bubble dynamics in dual-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” submitted to Appl. Spectrosc.

Pérez, F. R.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[CrossRef]

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
[CrossRef]

Radziemski, L. J.

Reuter, R.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Rivoallan, A.

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Sallé, B.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
[CrossRef] [PubMed]

Scaffidi, J.

Scaffidi, J. P.

M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, and S. M. Angel, “Dependence of emission intensity on bubble dynamics in dual-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” submitted to Appl. Spectrosc.

Scherbarth, N.

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Spizzicchino, V.

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

Taccogna, F.

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

Trefry, J. H.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Trocine, R. P.

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Vailhen, D.

Von Damm, K. L.

K. L. Von Damm. “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222(2000).
[CrossRef]

K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-247.
[CrossRef]

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[CrossRef]

Vors, E.

Walsh, M. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Wayne, D. M.

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004).
[CrossRef] [PubMed]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

Wiens, R. C.

Anal. Bioanal. Chem. (2)

R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[CrossRef]

Appl. Geochem. (1)

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

Appl. Spectrosc. (6)

Appl. Surf. Sci. (1)

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[CrossRef]

J. Geophys. Res. (2)

K. L. Von Damm. “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222(2000).
[CrossRef]

J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994).
[CrossRef]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Spectrochim. Acta B (1)

A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004).
[CrossRef]

Spectrochim. Acta Part A (1)

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[CrossRef]

Spectrochim. Acta Part B (7)

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005).
[CrossRef]

A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378(2007).
[CrossRef]

A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007).
[CrossRef]

A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005).
[CrossRef]

Spectrochimica Acta Part B (1)

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997).
[CrossRef]

submitted to Appl. Spectrosc. (1)

M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, and S. M. Angel, “Dependence of emission intensity on bubble dynamics in dual-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” submitted to Appl. Spectrosc.

Other (2)

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[CrossRef]

K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-247.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Laboratory setup for aqueous DP-LIBS experiments.

Fig. 2
Fig. 2

Mg (I) ( 518.4 nm peak) optimization at 1 × 10 5 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 3
Fig. 3

Mg (I) ( 518.4 nm peak) optimization at 1.38 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 4
Fig. 4

Mg (I) ( 518.4 nm peak) optimization at 2.76 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 5
Fig. 5

Calibration curves calculated by a linear least squares fit of the concentration data and their 95% confidence limits on the coefficients for the Mg (I) 518.4 nm peak, ○, solid   line = 1 × 10 5 Pa ; □, dashed   line = 1.38 × 10 7 Pa ; ∆, dotted   line = 2.76 × 10 7 Pa ( E 1 = 60 mJ , E 2 = 60 mJ , t d = 50 ns , and Δ T = 50 ns ).

Fig. 6
Fig. 6

Spectra of the Mg (I) peak ( 518.4 nm ) at 2.76 × 10 7 Pa . The concentrations from bottom to top are 1000 ppm and 5000 ppm . ( E 1 = 60 mJ , E 2 = 60 mJ , t d = 50 ns , and Δ T = 50 ns ). For clarity, the spectra have been offset from each other by 500 a.u.

Fig. 7
Fig. 7

K (I) ( 769.9 nm peak) optimization at 1 × 10 5 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 8
Fig. 8

K (I) ( 769.9 nm peak) optimization at 2.76 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 9
Fig. 9

Spectra of the 769.9 nm K (I) peak at 2.76 × 10 7 Pa . Concentrations of spectra from bottom to top are 100 ppm , 500 ppm , 1000 ppm . ( E 1 = 100 mJ , E 2 = 140 mJ , t d = 1000 ns , and Δ T = 50 ns ). For clarity, the spectra have been offset from each other by 200 a.u.

Fig. 10
Fig. 10

Ca (I) ( 422 nm peak) optimization at 1 × 10 5 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 11
Fig. 11

Ca (I) ( 422 nm peak) optimization at 1.38 × 10 17 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 12
Fig. 12

Ca (I) ( 422 nm peak) optimization at 2.76 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 13
Fig. 13

Calibration curves calculated by a linear least squares fit of the concentration data and their 95% confidence limits on the coefficients for the Ca (I) 422 nm peak: ○, solid   line = 1 × 10 5 Pa , □, dashed   line = 1.38 × 10 7 Pa ; ∆, dotted   line = 2.76 × 10 7 Pa ( E 1 = 100 mJ , E 2 = 100 mJ , t d = 50 ns , and Δ T = 50 ns ).

Fig. 14
Fig. 14

Spectra of calcium ( 393 nm Ca (II), 396 nm Ca (II), and 422 nm Ca (I) peaks) at 2.76 × 10 7 Pa . Concentrations of spectra from bottom to top are 100 ppm , 500 ppm , and 1000 ppm ( E 1 = 100 mJ , E 2 = 100 mJ , t d = 50 ns , and Δ T = 50 ns ). For clarity, the spectra have been offset from each other by 15,000 a.u.

Fig. 15
Fig. 15

Mn (I) ( 403 nm peak) optimization at 1 × 10 5 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 16
Fig. 16

Mn (I) ( 403 nm peak) optimization at 2.76 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 17
Fig. 17

Spectra of the Mn (I) peak ( 403 nm ) at 2.76 × 10 7 Pa . Concentrations from bottom to top are 100 ppm , 500 ppm , and 1000 ppm ( E 1 = 100 mJ , E 2 = 60 mJ , t d = 50 ns , and Δ T = 50 ns ). For clarity, the spectra have been offset from each other by 1000 a.u.

Fig. 18
Fig. 18

Na (I) ( 588.995 nm ) optimization at 1 × 10 5 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 19
Fig. 19

Na (I) ( 588.995 nm ) optimization at 2.76 × 10 7 Pa . Each dot represents the peak intensity measured at one condition.

Fig. 20
Fig. 20

Calibration curves calculated by a linear least squares fit of the concentration data and their 95% confidence limits on the coefficients for the Na (I) 588.995 nm peak. ○, solid   line = 1 × 10 5 Pa ; □, dashed   line = 1.38 × 10 7 Pa ; ∆, dotted   line = 2.76 × 10 7 Pa .

Fig. 21
Fig. 21

Spectra of the Na (I) doublet peaks ( 588.995 nm and 589.6 nm ) at 2.76 × 10 7 Pa . Concentrations from bottom to top are 10 ppm , 50 ppm , 100 ppm , 500 ppm , and 1000 ppm ( E 1 = 60 mJ , E 2 = 140 mJ , Δ T = 50 ns , and t d = 50 ns ). For clarity, the spectra have been offset from each other by 2000 a.u., except for the 1000 ppm spectrum which has been offset from the 500 ppm spectrum by 8000 a.u.

Fig. 22
Fig. 22

Effect of interpulse delay on intensity on the 588 nm Na peak at 1 × 10 5 Pa ( 1000 ppm ).

Fig. 23
Fig. 23

Na (I) spectra at 1 × 10 5 Pa ( E 1 = 20 mJ , E 2 = 140 mJ , and t d = 50 ns ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I f = π E D 2 4 τ L f 2 λ 2 M 4 ,

Metrics