Abstract

The ability of oceanographers to make sustained measurements of ocean processes is limited by the number of available sensors for long-term in situ analysis. In recent years, laser-induced breakdown spectroscopy (LIBS) has been identified as a viable technique to develop into an oceanic chemical sensor. We performed single pulse laser-induced breakdown spectroscopy of high pressure bulk aqueous solutions to detect three analytes (sodium, manganese, and calcium) that are of key importance in hydrothermal vent fluids, an ocean environment that would greatly benefit from the development of an oceanic LIBS sensor. The interrelationship of the key experimental parameters, pulse energy and gate delay, for a range of pressures up to 2.76×107Pa, is studied. A minimal effect of pressure on the peak intensity is observed. A short gate delay (less than 200ns) must be used at all pressures. The ability to use a relatively low laser pulse energy (less than 60mJ) for detection of analytes at high pressure is also established. Na, Mn, and Ca are detectable at pressures up to 2.76×107Pa at 50, 500, and 50ppm, respectively, using an Echelle spectrometer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
    [Crossref]
  2. A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
    [Crossref] [PubMed]
  3. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
    [Crossref]
  4. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
    [Crossref]
  5. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004).
    [Crossref] [PubMed]
  6. Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
    [Crossref]
  7. G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
    [Crossref]
  8. R. Brennetot, J. L. Lacour, E. Vors, A. Rivoallan, D. Vailhen, and S. Maurice, “Mars analysis by laser-induced breakdown spectroscopy (MALIS): Influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs,” Appl. Spectrosc. 57, 744-752 (2003).
    [Crossref] [PubMed]
  9. A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331-340 (2000).
    [Crossref]
  10. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
    [Crossref]
  11. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515(2007).
    [Crossref] [PubMed]
  12. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007).
    [Crossref] [PubMed]
  13. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
    [Crossref] [PubMed]
  14. C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
    [Crossref]
  15. K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-249.
    [Crossref]
  16. K. L. Von Damm, “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222 (2000).
    [Crossref]
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
    [Crossref]
  18. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
    [PubMed]
  19. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085-6093(2003).
    [Crossref] [PubMed]
  20. A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
    [Crossref]
  21. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
    [Crossref]
  22. C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
    [Crossref]
  23. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
    [Crossref]
  24. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
    [Crossref] [PubMed]
  25. A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378 (2007).
    [Crossref]

2007 (4)

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[Crossref]

A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378 (2007).
[Crossref]

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007).
[Crossref] [PubMed]

A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515(2007).
[Crossref] [PubMed]

2006 (7)

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[Crossref] [PubMed]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[Crossref]

M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006).
[Crossref] [PubMed]

2005 (1)

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

2004 (2)

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004).
[Crossref] [PubMed]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

2003 (2)

2000 (2)

A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331-340 (2000).
[Crossref]

K. L. Von Damm, “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222 (2000).
[Crossref]

1997 (3)

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
[Crossref]

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[Crossref]

1996 (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

1984 (1)

Ahlers, B.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[Crossref]

Angel, S. M.

Arp, Z. A.

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004).
[Crossref] [PubMed]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Bertolini, A.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Brennetot, R.

Carelli, G.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Chave, A. D.

Colao, F.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Courrèges-Lacoste, G. B.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[Crossref]

Cremers, D.

Cremers, D. A.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004).
[Crossref] [PubMed]

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
[Crossref]

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
[Crossref]

Cristoforetti, G.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

De Giacomo, A.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

DellAglio, M.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Fantoni, R.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

Ferris, M.

Ferris, M. J.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
[Crossref]

Fichet, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Francesconi, F.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Francesconi, M.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

German, C. R.

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[Crossref]

Haisch, C.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[Crossref]

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Harris, R. D.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Jenkins, T. F.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[Crossref]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Knight, A.

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Lacour, J. L.

Lacour, J.-L.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Laserna, J. J.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[Crossref]

Lawrence-Snyder, M.

Lazic, V.

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

Legnaioli, S.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Liermann, J.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

Lopez-Moreno, C.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[Crossref]

Loree, T. R.

Manhes, G.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Marchesini, L.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Marsili, P.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Mauchien, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Maurice, S.

McManus, C. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

McMillan, N. J.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Michel, A. P. M.

Miziolek, A.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Niessner, R.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

Noll, R.

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[Crossref] [PubMed]

Oschwald, D. M.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Palanco, S.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[Crossref]

Palleschi, V.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Panne, U.

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

Pardini, L.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Parker, G. R.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Pearman, W.

Pérez, F. R.

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[Crossref]

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
[Crossref]

Radziemski, L. J.

Rivoallan, A.

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[Crossref]

Sall, B.

Sallé, B.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Salvetti, A.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Scaffidi, J.

Scherbarth, N.

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

Sorrentino, F.

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Vailhen, D.

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

Von Damm, K. L.

K. L. Von Damm, “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222 (2000).
[Crossref]

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[Crossref]

K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-249.
[Crossref]

Vors, E.

Walsh, M. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Wayne, D. M.

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004).
[Crossref] [PubMed]

Wiens, R. C.

Anal. Bioanal. Chem. (3)

A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006).
[Crossref] [PubMed]

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996).
[PubMed]

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997).
[Crossref]

Appl. Geochem. (2)

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006).
[Crossref]

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (6)

Appl. Surf. Sci. (1)

A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005).
[Crossref]

J. Geophys. Res. (1)

K. L. Von Damm, “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222 (2000).
[Crossref]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[Crossref]

Spectrochim. Acta Part A (1)

G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007).
[Crossref]

Spectrochim. Acta Part B (5)

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[Crossref]

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004).
[Crossref]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[Crossref]

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997).
[Crossref]

A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378 (2007).
[Crossref]

Other (2)

C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222.
[Crossref]

K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-249.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

LIBS laboratory setup. M 1 = 25 mm diameter, 1064 nm Nd:YAG mirror; L 1 = 12 mm × 12 mm lens; L 2 = 25 mm × 50 mm lens; M 2 = 50 mm diameter, 1064 nm Nd:YAG mirror; L 3 = 25 mm × 35 mm lens.

Fig. 2
Fig. 2

Interrelationship of pressure, gate delay, energy, and SBR for Na ( 588.995 nm ) (a)  1 × 10 5 Pa , (b)  6.89 × 10 6 Pa , (c)  1.38 × 10 7 Pa , (d)  2.07 × 10 7 Pa , (e)  2.76 × 10 7 Pa .

Fig. 3
Fig. 3

Spectra of Na ( 588.995 nm and 589.6 nm ) taken with a pulse energy of 40 mJ and a gate delay of 50 ns . From bottom to top, the spectra were taken at 1 × 10 5 Pa , 6.89 × 10 6 Pa , 1.38 × 10 7 Pa , 2.07 × 10 7 , and 2.76 × 10 7 Pa . For clarity, the spectra have been offset from each other by 8000 a.u.

Fig. 4
Fig. 4

Calibration curves calculated by a linear least squares fit of the concentration data and their 95% confidence limits on the coefficients for the 588.995 nm sodium peak. ○, solid line = 1 × 10 5 Pa ; □, dashed line = 1.38 × 10 7 Pa ; △, dotted line = 2.76 × 10 7 Pa .

Fig. 5
Fig. 5

Spectra of sodium ( 588.995 nm and 589.6 nm ) at 2.76 × 10 7 Pa made over a range of NaCl concentrations. The concentrations from bottom to top are 10 ppm , 50 ppm , 100 ppm , 500 ppm , and 1000 ppm . For clarity, the spectra have been offset from each other by 1000 a.u.

Fig. 6
Fig. 6

Interrelationship of pressure, t d , E, and SBR for Mn ( 403.076 nm ) (a)  1 × 10 5 Pa , (b)  6.89 × 10 6 Pa , (c)  1.38 × 10 7 Pa , (d)  2.07 × 10 7 Pa , (e)  2.76 × 10 7 Pa .

Fig. 7
Fig. 7

Manganese ( 403 nm peak) spectra using a 30 mJ energy pulse and a gate delay of 50 ns . The spectra from bottom to top are at 1 × 10 5 Pa , 6.89 × 10 6 Pa , 1.38 × 10 7 Pa , 2.07 × 10 7 Pa , 2.76 × 10 7 Pa . For clarity, the spectra have been offset from each other by 2000 a.u.

Fig. 8
Fig. 8

Calibration curves and their 95% confidence limits for the 403 nm manganese peak. ○, solid line = 1 × 10 5 Pa ; □, dashed line = 1.38 × 10 7 Pa ; △, dotted line = 2.76 × 10 7 Pa .

Fig. 9
Fig. 9

Spectra of manganese at 2.76 × 10 7 Pa made over a range of concentrations from bottom to top, the concentrations are 100 ppm , 500 ppm , and 1000 ppm . For clarity, the spectra have been offset from each other by 100 a.u.

Fig. 10
Fig. 10

Interrelationship of pressure, t d , E, and signal-to-background for Ca ( 393 nm ) (a)  1 × 10 5 Pa , (b)  1.38 × 10 7 Pa , (c)  2.76 × 10 7 Pa .

Fig. 11
Fig. 11

Interrelationship of pressure, t d , E, and SBR for Ca ( 422 nm ) (a)  1 × 10 5 Pa (b)  1.38 × 10 7 Pa (c)  2.76 × 10 7 Pa .

Fig. 12
Fig. 12

Calcium spectra using 30 mJ and a 50 ns gate delay. Calcium peaks ( 393 nm , 396 nm , and 422 nm ). Spectra from bottom to top: 1 × 10 5 Pa , 1.38 × 10 7 Pa , and 2.76 × 10 7 Pa . For clarity, the spectra have been offset from each other by 15,000 a.u.

Fig. 13
Fig. 13

Calibration curves calculated by a linear least squares fit of the concentration data and their 95% confidence limits on the coefficients for the (a)  393 nm and (b)  422 nm calcium peaks. ○, solid line = 1 × 10 5 Pa ; □, dashed line = 1.38 × 10 7 Pa ; △, dotted line = 2.76 × 10 7 Pa .

Fig. 14
Fig. 14

Calcium spectra at 2.76 × 10 7 Pa with peaks present at 393 nm , 396 nm , and 422 nm . (a) Spectra from bottom to top are 10 ppm , 50 ppm , 100 ppm , 500 ppm , 1000 ppm , respectively. For clarity, the spectra have been offset from each other by 2000 a.u. (b) Spectra from bottom to top are 10 ppm , 50 ppm , and 100 ppm , respectively. For clarity, the spectra have been offset from each other by 50 a.u.

Tables (1)

Tables Icon

Table 1 Calibration Curve Conditions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d σ o = 4 f λ M 2 π D ,
I f = π E D 2 4 τ L f 2 λ 2 M 4 ,
SBR = 20 log 10 amplitude peak amplitude background ,

Metrics