Abstract

A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate the importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.Yinon, ed., Counterterrorist Detection Techniques of Explosives (Elsevier, 2007), p. 454.
  2. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
    [CrossRef] [PubMed]
  3. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447-6454 (1999).
    [CrossRef]
  4. P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
    [CrossRef]
  5. F. C. De Lucia Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
    [CrossRef] [PubMed]
  6. F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
    [CrossRef]
  7. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
    [CrossRef]
  8. C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  9. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
    [CrossRef]
  10. M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
    [CrossRef]
  11. C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
    [CrossRef]
  12. A. C. Samuels, F. C. De Lucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  13. J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
    [CrossRef]
  14. J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
    [CrossRef] [PubMed]
  15. J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
    [CrossRef]
  16. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
    [CrossRef]
  17. J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
    [CrossRef] [PubMed]
  18. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215(2003).
    [CrossRef] [PubMed]
  19. C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
    [CrossRef]
  20. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
    [CrossRef]
  21. G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
    [CrossRef]
  22. S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
    [CrossRef]
  23. M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
    [CrossRef]
  24. K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
    [CrossRef] [PubMed]

2008 (1)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

2007 (5)

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

2006 (5)

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
[CrossRef] [PubMed]

2005 (3)

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
[CrossRef] [PubMed]

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

2004 (1)

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

2003 (5)

2001 (1)

J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
[CrossRef]

1999 (1)

1975 (1)

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

Amador-Hernandez, J.

J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
[CrossRef]

Angel, S. M.

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Barresi, V.

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

Bauer, C.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Berry, S. R.

Bohling, C.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Bousquet, B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Buckley, S. G.

Burgmeier, J.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Bylesjo, M.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Canioni, L.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Carter, J. C.

Claspy, P. C.

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

Cloarec, O.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Condorelli, D. F.

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

de Castro, M. D. L.

J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
[CrossRef]

de Juan, A.

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

De Lucia, F.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. De Lucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

F. C. De Lucia Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef] [PubMed]

Eslava, S.

K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
[CrossRef] [PubMed]

Fernandez-Romero, J. M.

J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
[CrossRef]

Fortuna, C. G.

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

Goormaghtigh, E.

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

Harmon, R. S.

Hecho, I. L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Hohmann, K.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Holl, G.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Holmes, E.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Hybl, J. D.

Jordan, M. P.

Kwong, S.

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

Labbe, N.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

Lacour, J.-L.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

Laserna, J. J.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Lawrence-Snyder, M.

Lee, K. R.

K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
[CrossRef] [PubMed]

Lin, X.

K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
[CrossRef] [PubMed]

Lithgow, G. A.

López-Moreno, C.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Manhes, G.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

Martin, M. Z.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

Mauchien, P.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

Maurice, S.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

McNesby, K. L.

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. De Lucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

F. C. De Lucia Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003).
[CrossRef] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

Musumarra, G.

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

Navea, S.

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

Nicholson, J. K.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Nodov, E.

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

Palanco, S.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Pao, Y. H.

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

Park, D. C.

K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
[CrossRef] [PubMed]

Piehler, T.

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

Potin-Gautier, M.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Rantalainen, M.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Reynolds, J. G.

Rials, T. G.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

Rose, J.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Salle, B.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

Samuels, A. C.

Sarger, L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Sausa, R. C.

Scaffidi, J.

Schade, W.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Scheel, D.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Schippers, W.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Scirè, S.

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

Singh, G.

Sirven, J. B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Sirven, J.-B.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

Swayambunathan, V.

Tauler, R.

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

Tellier, S.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Trygg, J.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Tysk, S. M.

Walters, R. A.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Whipple, R. E.

Whitehouse, A. I.

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Willer, U.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

Winkel, R. J.

Wullschleger, S. D.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (2)

IEEE J. Quantum Electron. (1)

P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975).
[CrossRef]

J. Anal. At. Spectrom. (3)

C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007).
[CrossRef]

J. Chemom. (1)

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

J. Chemom. (2)

G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004).
[CrossRef]

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006).
[CrossRef]

Proteins Struct. Funct. Bioinf. (1)

S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006).
[CrossRef]

Proteomics (1)

K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003).
[CrossRef] [PubMed]

Spectrochim. Acta Part B (6)

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005).
[CrossRef]

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005).
[CrossRef]

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007).
[CrossRef]

Other (1)

J.Yinon, ed., Counterterrorist Detection Techniques of Explosives (Elsevier, 2007), p. 454.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Single shot LIBS spectra of (a) RDX residue, (b) Arizona road dust, and (c) oil residue on (d) aluminum substrate. Atomic emission peaks of interest for explosives detection are labeled. Emission lines resulting from the substrate include atomic and ionic Al as well as AlO (band heads near 500 nm ).

Fig. 2
Fig. 2

(a) PLS-DA model of unknown samples (RDX, dust, oil, aluminum) matched against class 1 (RDX) of model. The solid line represents the threshold established by Bayesian statistics for the model. Inset, the cross validation classification error is determined for each number of LVs. For this model eight LVs were chosen, since that is the minimum number of LVS with the smallest classification error. (b) Biplot of scores and loadings of LVs 1 and 2. The axes describe the scores. The loadings (filled circles) are on a different scale. The loadings within the dashed circle include the ratios C / CN , O / CN , H / CN , N / CN , C 2 / CN , and C 2 / C .

Fig. 3
Fig. 3

Single-shot LIBS spectra of (a) house dust, (b) fingerprint residue, (c) TNT, and (d) Comp-B on aluminum substrate.

Fig. 4
Fig. 4

Score plots of a PCA model that includes RDX, dust, oil, and aluminum with the following test sample sets: (a) house dust, RDX from solution, and RDX fingerprints; (b) fingerprints, Comp-B, and TNT; (c) RDX–dust from solution, RDX–dust from a dry mix, RDX–oil, and oil–dust.

Fig. 5
Fig. 5

PLS-DA plot of test samples against PLS-DA model that includes RDX, dust, oil, and aluminum. The test samples are being tested against the RDX class of the model. The dashed line represents the threshold determined by Bayesian statistics based on the model. Inset, cross validation classification error for the number of LVs selected. For this model nine LVs were chosen (indicated by arrow).

Fig. 6
Fig. 6

ROC curves of nonexplosives versus explosives for a range of LVs for a PLS-DA model that includes RDX, dust, oil, and aluminum.

Fig. 7
Fig. 7

PLS-DA plot of test samples against PLS-DA model built using 16 LVs that includes RDX, dust, oil, and aluminum. The test samples are being tested against the RDX class of the model. The dashed line represents the threshold determined by Bayesian statistics based on the model.

Fig. 8
Fig. 8

Three single-shot LIBS spectra of RDX at (a) 20, (b) 30, and (c)  50   m . Note the different intensity axes for each spectrum.

Tables (2)

Tables Icon

Table 1 Sample Sets Used to Test PLS-DA Models

Tables Icon

Table 2 PLS-DA results for all test samples a

Metrics