Abstract

The performance of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of toxic metals such as Cr in water. Pure aqueous solutions (unitary matrix) with variable Cr concentration were used to construct calibration curves and to estimate the LIBS limit of detection (LOD). The calibration curves for Cr in a binary matrix (Cr plus Cd) and a tertiary matrix (Cr plus Cd and Co) were used to evaluate the matrix effect on the LOD. The LOD for Cr was found to be 1.1, 1.5, and 2.0ppm (parts in 106) in a unitary, binary, and tertiary matrix, respectively. Once calibrated, the system was utilized for the detection and quantification of the Cr in tannery wastewater collected from different locations in the industrial area of Kanpur, India, where Cr concentrations were determined to be far higher than the U.S. Environmental Protection Agency safe drinking water limit of 0.05ppm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gauglhofer and V. Bianchi, Metals and their Compounds in the Environment (VCH, 1991), pp. 1101-1126.
  2. F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
    [CrossRef] [PubMed]
  3. A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
    [CrossRef]
  4. R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
    [CrossRef] [PubMed]
  5. A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).
  6. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006).
    [CrossRef]
  7. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
    [CrossRef]
  8. N. Tsuda and J. Yamada, “Study on laser induced plasma produced in liquid,” AIP Conf. Proc. 669, 400-403 (2003).
    [CrossRef]
  9. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  10. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
    [CrossRef]
  11. S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” J. Environ. Monit. Assess. , online first DOI: 10.1007/s10661-008-0173-1.
    [CrossRef]
  12. S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008).
    [CrossRef]
  13. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analyses of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
    [CrossRef]
  14. F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).
  15. C. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105 (1997).
    [CrossRef]
  16. J. Yamada and N. Tsuda, “Development behavior of plasma produced in liquid by YAG laser,” arXiv.org, arXiv:physics/0411069v1.
  17. T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).
  18. A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).
  19. D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
    [CrossRef]
  20. O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
    [CrossRef]
  21. N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008).
    [CrossRef]
  22. J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).
  23. S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
    [CrossRef]
  24. V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0.
    [CrossRef] [PubMed]
  25. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133-6137(2003).
    [CrossRef] [PubMed]
  26. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser--induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004).
    [CrossRef] [PubMed]
  27. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
  28. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
    [CrossRef]
  29. L. M. Berman and P. J. Wolf, “Laser induced breakdown spectroscopy of liquids: aqueous solution of nickel and chlorinated hydrocarbon,” Appl. Spectrosc. 52, 438-443 (1998).
    [CrossRef]
  30. R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
    [CrossRef]
  31. A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
    [CrossRef]
  32. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
    [CrossRef]
  33. A. Kumar, F. Y. Yueh, T. Miller, and J. P. Singh, “Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer,” Appl. Opt. 42, 6040-6046 (2003).
    [CrossRef] [PubMed]
  34. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
    [CrossRef]
  35. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
    [CrossRef]
  36. M. Kuzuya, H. Matsumoto, and H. Takechi, “Effect of laser energy on atmosphere on the emission characteristics of laser induced plasma,” Appl. Spectrosc. 47, 1659-1664(1993).
    [CrossRef]
  37. T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).
  38. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
    [CrossRef]
  39. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in Soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175-1181 (1996).
    [CrossRef]
  40. C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
    [CrossRef]
  41. H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998).
    [CrossRef]
  42. S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433-436 (2002).
    [CrossRef]
  43. Google Maps, http://maps.google.com/maps?daddr=kanpur.

2008

S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008).
[CrossRef]

N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008).
[CrossRef]

2007

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
[CrossRef]

2006

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

2005

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

2004

A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser--induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004).
[CrossRef] [PubMed]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).

2003

2002

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433-436 (2002).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

2000

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

1998

H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998).
[CrossRef]

L. M. Berman and P. J. Wolf, “Laser induced breakdown spectroscopy of liquids: aqueous solution of nickel and chlorinated hydrocarbon,” Appl. Spectrosc. 52, 438-443 (1998).
[CrossRef]

1997

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

C. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105 (1997).
[CrossRef]

1996

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in Soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175-1181 (1996).
[CrossRef]

1995

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
[CrossRef]

1994

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

1993

1984

Alguacil, F. J.

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

Alonso, M.

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

Andre, N.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Anticó, E.

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

Anzano, J. M.

Arca, C.

Beddows, D. C. S.

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Berman, L. M.

Bianchi, V.

J. Gauglhofer and V. Bianchi, Metals and their Compounds in the Environment (VCH, 1991), pp. 1101-1126.

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

Bousquet, B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
[CrossRef]

Buckely, S. G.

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Burgess, S.

Canioni, L.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
[CrossRef]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

Chaléard, C.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Charfi, B.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Cielo, P.

Ciucci, A.

Cook, R. L.

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

Corsi, M.

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Cremers, D. A.

Cristoforetti, G.

De giacomo, A.

A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

De pascale, O.

A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

Dell'aglio, M.

A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

Eppler, A. S.

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

Fawy, K. F.

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

Ferris, M. J.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in Soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175-1181 (1996).
[CrossRef]

Fontàs, C.

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

Foster, L. E.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).

Ganguli, A.

A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).

Gauglhofer, J.

J. Gauglhofer and V. Bianchi, Metals and their Compounds in the Environment (VCH, 1991), pp. 1101-1126.

Geertsen, C.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Gornushkin, I. B.

Gornushkin, S. I.

Güell, R.

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

Hahn, D. W.

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Hakkanen, H. J.

H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998).
[CrossRef]

Harith, M. A.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Hencken, K. R.

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Hickmott, D. D.

Hidalgo, M.

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
[CrossRef]

Johnsen, H. A.

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Kaiser, J.

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Karabutov, A. A.

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

Korppi-Tommoka, J. E. I.

H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998).
[CrossRef]

Koskelo, A. C.

Kukhlevsky, S. V.

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Kumar, A.

Kuzuya, M.

Lacour, J. L.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Legnaioli, S.

Letokhov, V. S.

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

Liška, M.

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

López-Delgado, A.

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

Loree, T. R.

Marstani, Z. M. H.

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

Matsumoto, H.

Mauchien, P.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Miller, T.

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Mohamed, A. A.

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

Mubarak, A. T.

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
[CrossRef]

Palleschi, V.

Pandhija, S.

S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008).
[CrossRef]

S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” J. Environ. Monit. Assess. , online first DOI: 10.1007/s10661-008-0173-1.
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Podymova, V.

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

Radziemski, L. J.

Rai, A. K.

S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008).
[CrossRef]

N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008).
[CrossRef]

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” J. Environ. Monit. Assess. , online first DOI: 10.1007/s10661-008-0173-1.
[CrossRef]

V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0.
[CrossRef] [PubMed]

Rai, K.

N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008).
[CrossRef]

Rai, V.

V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0.
[CrossRef] [PubMed]

Rai, V. N.

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

Rastelli, S.

Sabsabi, M.

Salvadó, V.

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

Salvetti, A.

Samek, O.

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

Sastre, A. M.

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Sharma, R. C.

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Singh, J. P.

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser--induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004).
[CrossRef] [PubMed]

A. Kumar, F. Y. Yueh, T. Miller, and J. P. Singh, “Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer,” Appl. Opt. 42, 6040-6046 (2003).
[CrossRef] [PubMed]

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Singh, V. K.

V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0.
[CrossRef] [PubMed]

Sirven, J. B.

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
[CrossRef]

Smaek, O.

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Smith, B. W.

Takechi, H.

Telle, H. H.

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
[CrossRef]

Tognoni, E.

Tripathi, A. K.

A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).

Tsuda, N.

N. Tsuda and J. Yamada, “Study on laser induced plasma produced in liquid,” AIP Conf. Proc. 669, 400-403 (2003).
[CrossRef]

T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).

T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).

J. Yamada and N. Tsuda, “Development behavior of plasma produced in liquid by YAG laser,” arXiv.org, arXiv:physics/0411069v1.

Uebbing, J.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

Urakawa, T.

T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).

Vallebona, C.

Winefordner, J. D.

Wolf, P. J.

Yamada, J.

N. Tsuda and J. Yamada, “Study on laser induced plasma produced in liquid,” AIP Conf. Proc. 669, 400-403 (2003).
[CrossRef]

T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).

J. Yamada and N. Tsuda, “Development behavior of plasma produced in liquid by YAG laser,” arXiv.org, arXiv:physics/0411069v1.

T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).

Yamaguchi, T.

T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).

Yamamoto, K. Y.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

Young, J.

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Yueh, F. Y.

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser--induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004).
[CrossRef] [PubMed]

A. Kumar, F. Y. Yueh, T. Miller, and J. P. Singh, “Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer,” Appl. Opt. 42, 6040-6046 (2003).
[CrossRef] [PubMed]

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

Yueh, F. Yu.

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

Zang, H.

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

Zhang, H.

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

AIP Conf. Proc.

N. Tsuda and J. Yamada, “Study on laser induced plasma produced in liquid,” AIP Conf. Proc. 669, 400-403 (2003).
[CrossRef]

Anal. Chem

H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998).
[CrossRef]

Anal. Chim. Acta

R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007).
[CrossRef] [PubMed]

Appl. Microbiol. Biotechnol.

A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).

Appl. Opt.

Appl. Phys. A

A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004).
[CrossRef]

Appl. Phys. B

R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994).
[CrossRef]

Appl. Spectrosc.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004).
[CrossRef]

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433-436 (2002).
[CrossRef]

L. M. Berman and P. J. Wolf, “Laser induced breakdown spectroscopy of liquids: aqueous solution of nickel and chlorinated hydrocarbon,” Appl. Spectrosc. 52, 438-443 (1998).
[CrossRef]

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in Soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175-1181 (1996).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

M. Kuzuya, H. Matsumoto, and H. Takechi, “Effect of laser energy on atmosphere on the emission characteristics of laser induced plasma,” Appl. Spectrosc. 47, 1659-1664(1993).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analyses of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
[CrossRef]

C. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105 (1997).
[CrossRef]

Bull. Aichi Inst. Technol. Part B

T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).

Chemosphere

F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004).
[CrossRef] [PubMed]

J. Air Waste Manage. Assoc.

F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).

J. Anal. At. Spectrom.

C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997).
[CrossRef]

J. Appl. Phys.

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995).
[CrossRef]

J. Braz. Chem. Soc.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

J. Environ. Monit. Assess.

S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” J. Environ. Monit. Assess. , online first DOI: 10.1007/s10661-008-0173-1.
[CrossRef]

J. Hazard. Mater.

N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008).
[CrossRef]

Lasers Med. Sci.

V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0.
[CrossRef] [PubMed]

Opt. Eng.

O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Pramana

S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008).
[CrossRef]

Process Control Qual.

J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).

Spectrochim. Acta Part B

D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002).
[CrossRef]

B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Talanta

A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006).
[CrossRef]

Trends Appl. Spectrosc.

A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).

Waste Manage.

S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000).
[CrossRef]

Other

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

J. Gauglhofer and V. Bianchi, Metals and their Compounds in the Environment (VCH, 1991), pp. 1101-1126.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

J. Yamada and N. Tsuda, “Development behavior of plasma produced in liquid by YAG laser,” arXiv.org, arXiv:physics/0411069v1.

T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).

Google Maps, http://maps.google.com/maps?daddr=kanpur.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

LIBS experimental setup to record the LIBS spectra of liquid samples.

Fig. 2
Fig. 2

Variation of intensity of analyte line Cr II ( 267.7 nm ) with the repetition rate of the laser.

Fig. 3
Fig. 3

Calibration curve for Cr using Cr II ( 267.7 nm ) in the concentration range of 20– 1000 ppm .

Fig. 4
Fig. 4

Calibration curve for Cr using Cr II ( 267.7 nm ) in the concentration range of 1000– 20,000 ppm .

Fig. 5
Fig. 5

Calibration curve for Cr II ( 267.7 nm ) in three different matrices.

Fig. 6
Fig. 6

LIBS spectra showing a higher continuum background at higher concentrations.

Fig. 7
Fig. 7

LIBS spectra of tannery water.

Fig. 8
Fig. 8

Comparison between single-shot LIBS spectra and average LIBS spectra of 100 shots.

Tables (3)

Tables Icon

Table 1 Comparison of LOD for Cr in Three Different Matrices

Tables Icon

Table 2 Comparison of LOD for Different Wavelengths of Cr

Tables Icon

Table 3 Comparison of LIBS Results for Concentration of Cr (ppm) in Tannery Water Collected from Different Locations of the Industrial Area of Kanpur, India ) with ICP-AES and AAS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = h ν j i A j i N g j Q exp ( E j k T ) ,
Y = 0.0258 + 0.0036 × X , R = 0.99 ,
Y = 1.7384 + 0.0019 × X , R = 0.99.
LOD = 3 σ B / S ,

Metrics