Abstract

A new design of a multimode interference (MMI) phased array structure is proposed. This design is based on replacing the arrayed delay arms between the first MMI power splitter and the second MMI combiner by periodic segmented waveguides. This allows a straight structure without curved waveguides and thus reduces greatly the size of the structure. A design example of an 8 channel multiplexer is presented showing a size reduction by a factor of 23 when compared with conventional design, while keeping nearly the same performance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit and C. van Dam, "PHASAR-based WDM devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
    [CrossRef]
  2. K. Takiguchi and M. Itoh, "Integrated-optic encoder/decoder for time spreading/wavelength-hopping optical CDMA," IEEE J. Sel. Top. Quantum Electron. 11, 300-306 (2005).
    [CrossRef]
  3. R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
    [CrossRef]
  4. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightwave Technol. 24, 77 (2006).
    [CrossRef]
  5. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  6. L. O. Lierstuen and A. Sudbø, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
    [CrossRef]
  7. M. R. Paiam and R. I. MacDonald, “Design of phased array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097-5108 (1997).
    [CrossRef] [PubMed]
  8. M. R. Paiam and R. I. MacDonald, “A 12-channel phased-array wavelength multiplexer with multimode interference couplers,” IEEE Photon. Technol. Lett. 10, 241-243 (1998).
    [CrossRef]
  9. Y. Lin, S. Lee, and C. Yao, “Four-channel coarse-wavelength division multiplexing demultiplexer with a modified Mach-Zehnder interferometer configuration on a silicon-on-insulator waveguide,” Appl. Opt. . 42, 2689-2694 (2003).
    [CrossRef] [PubMed]
  10. D. D. Stancil, “Kronig-Penney model of periodically segmented waveguides,” J. Opt. Soc. Am. B 35, 4767-4771 (1996).
  11. M. Hochberg, T. Baehr-Jones, C. Walker, J. Witzens, L. C. Gunn, and A. Scherer, "Segmented waveguides in thin silicon-on-insulator," J. Opt. Soc. Am. B 22, 1493-1497(2005).
    [CrossRef]
  12. D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightwave Technol. 17, 369-375 (1999).
    [CrossRef]
  13. D. Ortega, R. M. De La Rue, and J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284-290 (1998).
    [CrossRef]
  14. L. Li and J. J. Burke, “Linear propagation characteristics of periodically segmented waveguides,” Opt. Lett. 17, 1195-1197(1992).
    [CrossRef] [PubMed]
  15. D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, 1974), Chap. 2.

2007 (1)

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

2006 (1)

2005 (2)

K. Takiguchi and M. Itoh, "Integrated-optic encoder/decoder for time spreading/wavelength-hopping optical CDMA," IEEE J. Sel. Top. Quantum Electron. 11, 300-306 (2005).
[CrossRef]

M. Hochberg, T. Baehr-Jones, C. Walker, J. Witzens, L. C. Gunn, and A. Scherer, "Segmented waveguides in thin silicon-on-insulator," J. Opt. Soc. Am. B 22, 1493-1497(2005).
[CrossRef]

2003 (1)

1999 (1)

1998 (2)

D. Ortega, R. M. De La Rue, and J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284-290 (1998).
[CrossRef]

M. R. Paiam and R. I. MacDonald, “A 12-channel phased-array wavelength multiplexer with multimode interference couplers,” IEEE Photon. Technol. Lett. 10, 241-243 (1998).
[CrossRef]

1997 (1)

1996 (2)

M. K. Smit and C. van Dam, "PHASAR-based WDM devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

D. D. Stancil, “Kronig-Penney model of periodically segmented waveguides,” J. Opt. Soc. Am. B 35, 4767-4771 (1996).

1995 (2)

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

L. O. Lierstuen and A. Sudbø, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

1992 (1)

Agarwal, A.

Aitchison, J.

Aitchison, J. S.

Aldariz, J. M.

Arnold, J. M.

Baehr-Jones, T.

Baek, J. H.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Banwell, T.

Broeke, R. G.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Burke, J. J.

Cao, J.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Chen, W.

Chu, S. T.

Davidson, R.

De La Rue, R. M.

Delfyett, P. J.

Donovan, K.

Du, Y.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Etemad, S.

Fontaine, N. K.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Gill, D.

Gunn, L. C.

Hochberg, M.

Hryniewicz, J.

Itoh, M.

K. Takiguchi and M. Itoh, "Integrated-optic encoder/decoder for time spreading/wavelength-hopping optical CDMA," IEEE J. Sel. Top. Quantum Electron. 11, 300-306 (2005).
[CrossRef]

Jackel, J.

Ji, C.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Johnson, F.

King, O.

Lee, S.

Li, L.

Lierstuen, L. O.

L. O. Lierstuen and A. Sudbø, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

Lin, Y.

Little, B. E.

Lourdudoss, S.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

MacDonald, R. I.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, 1974), Chap. 2.

Menendez, R.

Olsson, F.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Ortega, D.

Paiam, M. R.

M. R. Paiam and R. I. MacDonald, “A 12-channel phased-array wavelength multiplexer with multimode interference couplers,” IEEE Photon. Technol. Lett. 10, 241-243 (1998).
[CrossRef]

M. R. Paiam and R. I. MacDonald, “Design of phased array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097-5108 (1997).
[CrossRef] [PubMed]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Pham, A. V.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Scherer, A.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

M. Hochberg, T. Baehr-Jones, C. Walker, J. Witzens, L. C. Gunn, and A. Scherer, "Segmented waveguides in thin silicon-on-insulator," J. Opt. Soc. Am. B 22, 1493-1497(2005).
[CrossRef]

Seo, S. W.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Shearn, M.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Smit, M. K.

M. K. Smit and C. van Dam, "PHASAR-based WDM devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

Soares, F. M.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Stancil, D. D.

D. D. Stancil, “Kronig-Penney model of periodically segmented waveguides,” J. Opt. Soc. Am. B 35, 4767-4771 (1996).

Sudbø, A.

L. O. Lierstuen and A. Sudbø, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

Takiguchi, K.

K. Takiguchi and M. Itoh, "Integrated-optic encoder/decoder for time spreading/wavelength-hopping optical CDMA," IEEE J. Sel. Top. Quantum Electron. 11, 300-306 (2005).
[CrossRef]

Toliver, P.

van Dam, C.

M. K. Smit and C. van Dam, "PHASAR-based WDM devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

Walker, C.

Witzens, J.

Yan, J.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Yao, C.

Yoo, S. J. B.

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

Young, J.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (3)

M. K. Smit and C. van Dam, "PHASAR-based WDM devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

K. Takiguchi and M. Itoh, "Integrated-optic encoder/decoder for time spreading/wavelength-hopping optical CDMA," IEEE J. Sel. Top. Quantum Electron. 11, 300-306 (2005).
[CrossRef]

R. G. Broeke, J. Cao, C. Ji, S. W. Seo, Y. Du, N. K. Fontaine, J. H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A. V. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quantum Electron. 13, 1497-1507 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. R. Paiam and R. I. MacDonald, “A 12-channel phased-array wavelength multiplexer with multimode interference couplers,” IEEE Photon. Technol. Lett. 10, 241-243 (1998).
[CrossRef]

L. O. Lierstuen and A. Sudbø, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

D. D. Stancil, “Kronig-Penney model of periodically segmented waveguides,” J. Opt. Soc. Am. B 35, 4767-4771 (1996).

M. Hochberg, T. Baehr-Jones, C. Walker, J. Witzens, L. C. Gunn, and A. Scherer, "Segmented waveguides in thin silicon-on-insulator," J. Opt. Soc. Am. B 22, 1493-1497(2005).
[CrossRef]

Opt. Lett. (1)

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, 1974), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fig. 1. Conventional 1×8 MMI PHASAR, showing the wasted area (regions I to V).

Fig. 2
Fig. 2

Schematic representation of a PSW in a buried waveguide (a) 3D representation of a (b) 2D cross section of the 2a×h SiO2-SiON step index buried waveguide across the transverse direction (normal to z direction); h is the waveguide height. (c) 2D Cross section across the propagation direction (normal to x direction) of the PSW with period Λ and duty cycle η.

Fig. 3
Fig. 3

Detailed diagram of the proposed structure geometry for 1×8 MMI PHASAR employing PSW.

Fig. 4
Fig. 4

Segmentation duty cycle of all PSWs for both polarizations (TE and TM) as well as optimized duty cycle from BPM simulation.

Fig. 5
Fig. 5

Detailed fabrication steps for the proposed 1×8 "straight" MMI PHASAR to fabricate the buried SiON waveguide that composes the whole structure.

Fig. 6
Fig. 6

Transverse field profile at the end of all the periodic segmented waveguides (PSW2 to PSW8) with respect to the first arm weveguide (Arm 1), which is a totally continuous waveguide.

Fig. 7
Fig. 7

Transmission of a PSW calculated using the BPM for a propagation length L js = 1005.76 μm (j = 5). The figure shows that a duty cycle η > 0.65 ensures negligible transmission loss.

Fig. 8
Fig. 8

Single mode operation of all access/arrayed waveguides of dimensions 3 μm × 3 μm.

Fig. 9
Fig. 9

Comparison between the spectral responses (a) (4 curves) of straight PHASAR (dotted) and conventional PHASAR (solid) for both polarizations (TE and TM). (b) Zoom on the response of the central channels in the straight PHASAR (dotted) and conventional PHASAR (solid). The details of each spectrum are given in Table 4.

Fig. 10
Fig. 10

View from the top detailing the progression from the MMI coupler to the segmented waveguides with the E z field contours.

Fig. 11
Fig. 11

Schematic representation of the (a) conventional PHASAR (CP), (b) straight PHASAR (SP) total device area, where L A D 1 is the length difference of the first arm to the reference arm.

Tables (5)

Tables Icon

Table 1 Design Parameters for Periodically Segmented Waveguide Array Arms for Center-Fed Multimode Interference Splitter 1×8 Multimode Interference Phased Array Structure Obtained from Ref. [6] and Eq. (6)

Tables Icon

Table 2 Target Specifications of the Phased Array Structure

Tables Icon

Table 3 Design Parameters for Conventional and Straight Phased Array Structure Using Center-Fed 1×8 Uniform Power Splitter

Tables Icon

Table 4 Comparison Between Conventional 1 × 8 Multimode Interference Phased Array Structure (MMI PHASAR) and Its Straight Counterpart for the Values Mentioned in Tables 2, 3

Tables Icon

Table 5 Area Reduction Ratio of Straight Multimode Interference Phased Array Structure to the Conventional Multimode Interference Phased Array Structure

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

φ splitter  outputs = φ combiner  inputs ,
φ j i = φ j k ,
n seg = n s + η Δ n ,
Δ n seg = η Δ n .
Φ j s = 2 q π ,
η = 1 Δ n eff ( q λ 0 L j s n s ) .
L j c , n + L j s , n = L j ,
c = p p 2 + k x 2 ω 2 μ ε ( n 2 n o 2 ) β ( a + 1 p ) cos 2 ( k x a ) exp ( p b ) ,
l c = π 2 c .
Area CP = W CP × L CP ,
W CP = ( W MMI + 4 R + L AD 1 4 + L ADN 4 ) ,
L CP = ( 4 R + L AD 1 2 + L MMIS + L MMIC ) ,
Area SP = W MMI × ( L j + L MMIS + L MMIC ) .
TRR W MMI + 4 R + L AD 1 / 4 + L ADN / 4 W MMI ,
LRR 4 R + L AD 1 / 2 + L MMIS + L MMIC L j + L MMIS + L MMIC .
TARR = TRR × LRR .

Metrics