Abstract

Because of surface plasmon resonance (SPR) induced nonlinear absorption, there are two optical limiting bands in gold nanoshells. The longer and shorter wavelength optical limiting bands correspond to the symmetric and antisymmetric coupling resonance absorption modes, respectively. Theoretical calculations based on quasi-static approximation show that the longer wavelength optical limiting band red shifts from the visible to the infrared region by decreasing the shell thickness. A mechanism based on polarization direction of a local electric field in a gold shell is investigated to describe the wavelength shift of the optical limiting band.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
    [CrossRef]
  2. B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
    [CrossRef]
  3. Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
    [CrossRef]
  4. L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
    [CrossRef]
  5. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005).
    [CrossRef]
  6. R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
    [CrossRef]
  7. G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006).
    [CrossRef] [PubMed]
  8. L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
    [CrossRef]
  9. Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
    [CrossRef]
  10. A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
    [CrossRef]
  11. P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
    [CrossRef]
  12. K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573-4575 (2007).
    [CrossRef]
  13. J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
    [CrossRef]
  14. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
    [CrossRef]
  15. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
    [CrossRef]
  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  17. S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
    [CrossRef]
  18. J. Zhu, “Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness,” Mater. Sci. Eng. A 454-455, 685-689 (2007).
    [CrossRef]
  19. J. Zhu, “Local environment dependent line-width of plasmon absorption in gold nanoshell: Effects of local field polarization,” Appl. Phys. Lett. 92, 241919 (2008).
    [CrossRef]

2008 (5)

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
[CrossRef]

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

J. Zhu, “Local environment dependent line-width of plasmon absorption in gold nanoshell: Effects of local field polarization,” Appl. Phys. Lett. 92, 241919 (2008).
[CrossRef]

2007 (3)

J. Zhu, “Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness,” Mater. Sci. Eng. A 454-455, 685-689 (2007).
[CrossRef]

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573-4575 (2007).
[CrossRef]

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

2006 (1)

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

2005 (2)

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005).
[CrossRef]

2004 (1)

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

2002 (1)

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

2000 (2)

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

1999 (2)

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

1997 (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
[CrossRef]

Anija, M.

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Averitt, R. D.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
[CrossRef]

Bai, S. W.

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

Balogh, L.

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

Belloni, J.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Bhaktha, B. N. S.

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Chang, Q.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

Delaire, J.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Delouis, J.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Deng, Y.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005).
[CrossRef]

Feneyrou, P.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Francois, L.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Gao, Y. C.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Goodson, T.

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

Guduru, R.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

Halas, N. J.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
[CrossRef]

Irimpan, L.

L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
[CrossRef]

Ispasoiu, R. G.

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

Jiao, W. Y.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

Jiao, X. J.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Jiao, Y.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Karthikeyan, B.

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

Kiran, P. P.

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005).
[CrossRef]

Li, J. J.

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

Li, Y. L.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Liu, H. F.

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Liu, S. T.

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Ming, H.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Mostafavi, M.

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

Nadeer, T. M.

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

Nair, A. S.

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Nampoori, V. P. N.

L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
[CrossRef]

Philip, R.

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Pradeep, T.

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Qu, S. L.

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Radhakrishnan, P.

L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
[CrossRef]

Rao, D. N.

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Riggs, J. E.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

Rollins, H. W.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

Sandeep, C. S.

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
[CrossRef]

Song, Y. L.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Sun, W. F.

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

Sun, X. Q.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Sun, Y. P.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

Sun, Y. Y.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Suryanarayanan, V.

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Tanabe, K.

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573-4575 (2007).
[CrossRef]

Thomas, J.

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Tomalia, D. A.

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

Varnavski, O. P.

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, G.

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

Wang, P.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Wang, Y. X.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Westcott, S. L.

Ye, H. G.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

Zhang, D. G.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Zhang, Q. J.

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

Zhang, X. R.

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Zhao, J. W.

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

Zhu, D. B.

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Zhu, J.

J. Zhu, “Local environment dependent line-width of plasmon absorption in gold nanoshell: Effects of local field polarization,” Appl. Phys. Lett. 92, 241919 (2008).
[CrossRef]

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

J. Zhu, “Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness,” Mater. Sci. Eng. A 454-455, 685-689 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

J. Zhu, “Local environment dependent line-width of plasmon absorption in gold nanoshell: Effects of local field polarization,” Appl. Phys. Lett. 92, 241919 (2008).
[CrossRef]

Chem. Phys. (1)

Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008).
[CrossRef]

Curr. Appl. Phys. (1)

Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000).
[CrossRef]

J. Appl. Phys. (1)

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

J. Mater. Sci. (1)

J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (4)

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005).
[CrossRef]

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999).
[CrossRef]

Mater. Lett. (1)

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573-4575 (2007).
[CrossRef]

Mater. Sci. Eng. A (1)

J. Zhu, “Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness,” Mater. Sci. Eng. A 454-455, 685-689 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005).
[CrossRef]

Opt. Commun. (2)

B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008).
[CrossRef]

S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997).
[CrossRef]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated transmitted energy for a gold nanoshell as a function of input energy and wavelength. (a) shell thickness is 7.5 nm , the inset is the geometry of a gold nanoshell; (b) shell thickness is 2.5 nm .

Fig. 2
Fig. 2

(a) Ratio of output and input energy as a function of shell thickness and wavelength; (b) Absorption as a function of shell thickness and wavelength.

Fig. 3
Fig. 3

Polarization direction contour plots in the section plane of a 5 nm thick gold shell coated on a dielectric core of radius 15 nm with ϵ 1 = 5.0 and ϵ 3 = 1.78 at (a)  514 nm for antisymmetric coupling and (b)  725 nm for symmetric coupling.

Fig. 4
Fig. 4

Symmetric coupling SPR wavelength as a function of core radius, the inset shows the chordal length of a gold shell as the reduced effective mean free path.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ abs = 8 π 2 ε 3 r 2 3 λ Im { ε 2 [ ε 1 ( 3 2 p ) + 2 ε 2 p ] ε 3 [ ε 1 p + ε 2 ( 3 p ) ] ε 2 [ ε 1 ( 3 2 p ) + 2 ε 2 p ] + 2 ε 3 [ ε 1 p + ε 2 ( 3 p ) ] } ,
ε 2 ( ω ) = ε 2 r ( ω ) + i ε 2 i ( ω ) = [ n 2 ( ω ) n 2 ( ω ) ] + i [ 2 n ( ω ) n ( ω ) ] ,
ε 2 r ( ω , I ) = n 2 n 2 + 2 n Δ n 2 n Δ n ,
ε 2 i ( ω , I ) = 2 n n + 2 n Δ n + 2 n Δ n ,
I out = I in e σ abs x .
λ = hc E 0 A 2 r 2 2 r 1 2 ,

Metrics