Abstract

In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom’s National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University, 1994).
  2. J. Graeme, Photodiode Amplifiers--Op Amp Solutions (McGraw-Hill, 1995).
  3. E. Theocharous and E. M. Wareham, “Ultra-high performance photodetection systems for radiometric applications,” Meas. Sci. Technol. 15, 1216-1221 (2004).
    [CrossRef]
  4. Burr-Brown ACF2101 Data Sheet, http://focus.ti.com/lit/ds/symlink/acf2101.pdf.
  5. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.
  6. Freescale MC9S08GB60 Data Sheet, http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S08GB60.pdf.
  7. H. Ott, “Intrinsic noise sources,” in Noise Reduction Techniques in Electronic Systems (Wiley, 1998), pp. 228-243.
  8. H. W. Denny, Grounding for the Control of EMI (Don White Consultants, 1983).
  9. M. Mardiguian, How to Control Electrical Noise (Don White Consultants, 1981).
  10. J. Yeager and M. A. Hrusch-Tupta, eds., Low Level Measurements: Precision DC Current, Voltage, and Resistance Measurements 5th ed. (Keithley Instruments, 1998).
  11. E. F. Zalewski and C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867-2873(1983).
    [CrossRef] [PubMed]
  12. G. Eppeldauer and J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091-3099 (1991).
    [CrossRef] [PubMed]
  13. S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
    [CrossRef]
  14. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
    [CrossRef]
  15. M. de Podesta and G. Edwards, “The limits of a Rayleigh-scattering primary thermometer,” Int. J. Thermophys. 29, 1719-1729 (2008).
  16. J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
    [CrossRef]
  17. Y. Ohno and Y. Zong, “Establishment of the NIST flashing light photometric unit,” presented at SPIE SD97 Symposium, San Diego, (27 July-1 Aug. 1997).
  18. Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

2004 (1)

E. Theocharous and E. M. Wareham, “Ultra-high performance photodetection systems for radiometric applications,” Meas. Sci. Technol. 15, 1216-1221 (2004).
[CrossRef]

2003 (1)

J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
[CrossRef]

1994 (1)

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

1991 (2)

1983 (1)

Biller, S. D.

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Brida, G.

J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
[CrossRef]

Cromer, C. L.

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

de Podesta, M.

M. de Podesta and G. Edwards, “The limits of a Rayleigh-scattering primary thermometer,” Int. J. Thermophys. 29, 1719-1729 (2008).

Denny, H. W.

H. W. Denny, Grounding for the Control of EMI (Don White Consultants, 1983).

Duda, C. R.

Edwards, G.

M. de Podesta and G. Edwards, “The limits of a Rayleigh-scattering primary thermometer,” Int. J. Thermophys. 29, 1719-1729 (2008).

Eppeldauer, G.

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

G. Eppeldauer and J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091-3099 (1991).
[CrossRef] [PubMed]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Geist, J.

J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
[CrossRef]

Graeme, J.

J. Graeme, Photodiode Amplifiers--Op Amp Solutions (McGraw-Hill, 1995).

Gray, P. R.

P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.

Hardis, J. E.

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

G. Eppeldauer and J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091-3099 (1991).
[CrossRef] [PubMed]

Hurst, P. J.

P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.

Jelley, N. A.

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Lewis, S. H.

P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.

Mardiguian, M.

M. Mardiguian, How to Control Electrical Noise (Don White Consultants, 1981).

Meyer, R. G.

P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.

Ohno, Y.

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

Y. Ohno and Y. Zong, “Establishment of the NIST flashing light photometric unit,” presented at SPIE SD97 Symposium, San Diego, (27 July-1 Aug. 1997).

Ott, H.

H. Ott, “Intrinsic noise sources,” in Noise Reduction Techniques in Electronic Systems (Wiley, 1998), pp. 228-243.

Rastello, M. L.

J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
[CrossRef]

Rieke, G. H.

G. H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University, 1994).

Theocharous, E.

E. Theocharous and E. M. Wareham, “Ultra-high performance photodetection systems for radiometric applications,” Meas. Sci. Technol. 15, 1216-1221 (2004).
[CrossRef]

Thorman, M. D.

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Ward, T. H.

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Wareham, E. M.

E. Theocharous and E. M. Wareham, “Ultra-high performance photodetection systems for radiometric applications,” Meas. Sci. Technol. 15, 1216-1221 (2004).
[CrossRef]

Zalewski, E. F.

Zong, Y.

Y. Ohno and Y. Zong, “Establishment of the NIST flashing light photometric unit,” presented at SPIE SD97 Symposium, San Diego, (27 July-1 Aug. 1997).

Appl. Opt. (2)

J. Illum. Eng. Soc. (1)

Y. Ohno, C. L. Cromer, J. E. Hardis, and G. Eppeldauer, “The detector-based candela scale and related photometric calibration procedures at NIST,” J. Illum. Eng. Soc. 23, 88-98 (1994).

Meas. Sci. Technol. (1)

E. Theocharous and E. M. Wareham, “Ultra-high performance photodetection systems for radiometric applications,” Meas. Sci. Technol. 15, 1216-1221 (2004).
[CrossRef]

Metrologia (2)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

J. Geist, G. Brida, and M. L. Rastello, “Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40, S204-S207(2003).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

S. D. Biller, N. A. Jelley, M. D. Thorman, N. P. Fox, and T. H. Ward, “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory,” Nucl. Instrum. Methods Phys. Res. A 432, 364-373 (1999).
[CrossRef]

Other (11)

G. H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University, 1994).

J. Graeme, Photodiode Amplifiers--Op Amp Solutions (McGraw-Hill, 1995).

Y. Ohno and Y. Zong, “Establishment of the NIST flashing light photometric unit,” presented at SPIE SD97 Symposium, San Diego, (27 July-1 Aug. 1997).

M. de Podesta and G. Edwards, “The limits of a Rayleigh-scattering primary thermometer,” Int. J. Thermophys. 29, 1719-1729 (2008).

Burr-Brown ACF2101 Data Sheet, http://focus.ti.com/lit/ds/symlink/acf2101.pdf.

P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Instability and Nyquist criterion,” in Analysis and Design of Analog Integrated Circuits (Wiley, 2001), pp. 626-634.

Freescale MC9S08GB60 Data Sheet, http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S08GB60.pdf.

H. Ott, “Intrinsic noise sources,” in Noise Reduction Techniques in Electronic Systems (Wiley, 1998), pp. 228-243.

H. W. Denny, Grounding for the Control of EMI (Don White Consultants, 1983).

M. Mardiguian, How to Control Electrical Noise (Don White Consultants, 1981).

J. Yeager and M. A. Hrusch-Tupta, eds., Low Level Measurements: Precision DC Current, Voltage, and Resistance Measurements 5th ed. (Keithley Instruments, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical relative spectral response of different types of solid-state photodetectors.

Fig. 2
Fig. 2

Transimpedance amplifier.

Fig. 4
Fig. 4

SIA board made by NPL.

Fig. 5
Fig. 5

NPL measurement setup.

Fig. 6
Fig. 6

CMI measurement setup

Fig. 7
Fig. 7

Nonlinearity histogram of the Burr-Brown internal integration capacitor: light gray, gain 10 8 ; dark gray, gain 10 9 .

Fig. 8
Fig. 8

Nonlinearity histogram of polypropylene external integration capacitor: light gray, gain 10 8 ; dark gray, gain 10 9 .

Fig. 9
Fig. 9

SIA output noise with a 50 Hz noise source.

Fig. 10
Fig. 10

Output noise versus input current.

Fig. 11
Fig. 11

Gain histogram—internal integration capacitor.

Fig. 12
Fig. 12

Gain histogram—external polypropylene integration capacitor.

Tables (2)

Tables Icon

Table 1 Comparison of Linearity and Gain Stability of Switched Integration Amplifiers and Top-Quality Laboratory Transimpedance Amplifiers for the Gains 10 8 and 10 9

Tables Icon

Table 2 Current Noise Floor Values Measured with a Trap Detector for Switched Integration Amplifiers and Top-Quality Laboratory Transimpedance Amplifiers for the Gain 10 9

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V out = R f i p ,
V out ( t = 0 ) = 0.
V out ( t ) = i p · t C .
G = t C .
C = t G m .

Metrics