Abstract

A compact tunable UV laser source based on intracavity sum frequency generation in a MgO-doped periodically-poled stoichiometric lithium tantalate optical parametric oscillator is reported. UV output at an 1mW level of power over the range of 364 to 378nm with a bandwidth of 0.5nm was obtained with a crystal that has just one periodically-poled grating period. The full tuning range can be as much as 68nm, from 324 to 392nm by varying the crystal temperature from room temperature to 250°C. This will cover nearly the entire UVA range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
    [CrossRef]
  2. See, for example, www.biouvled.com.
  3. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet raidation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
    [CrossRef] [PubMed]
  4. Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
    [CrossRef]
  5. J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).
  6. K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
    [CrossRef]
  7. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second harmonic generation at 384 nm in periodically poled lithium tantalite by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252-1254 (2000).
    [CrossRef]
  8. Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
    [CrossRef]
  9. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
    [CrossRef]
  10. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
    [CrossRef]
  11. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
    [CrossRef]
  12. S.-Y. Tu, A. H. Kung, Z. D. Gao, S. N. Zhu, S. Kurimura, and K. Kitamura, “Green-pumped high-power optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,” Opt. Lett. 31, 3632-3634 (2006).
    [CrossRef] [PubMed]
  13. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663-1672(1997).
    [CrossRef]

2006

2005

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

2004

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

2003

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

2001

K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
[CrossRef]

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

2000

1997

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet raidation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
[CrossRef] [PubMed]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663-1672(1997).
[CrossRef]

1994

Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
[CrossRef]

1964

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663-1672(1997).
[CrossRef]

Champert, P. A.

Eger, D.

K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
[CrossRef]

Fejer, M. M.

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet raidation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
[CrossRef] [PubMed]

Gao, Z. D.

Kato, M.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

Kitamura, K.

S.-Y. Tu, A. H. Kung, Z. D. Gao, S. N. Zhu, S. Kurimura, and K. Kitamura, “Green-pumped high-power optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,” Opt. Lett. 31, 3632-3634 (2006).
[CrossRef] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

Knappe, R.

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

Kung, A. H.

Kurimura, S.

S.-Y. Tu, A. H. Kung, Z. D. Gao, S. N. Zhu, S. Kurimura, and K. Kitamura, “Green-pumped high-power optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,” Opt. Lett. 31, 3632-3634 (2006).
[CrossRef] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

Laue, C.

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

Lu, Y.-L.

Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
[CrossRef]

Mao, L.

Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
[CrossRef]

Meyn, J. P.

Meyn, J.-P.

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet raidation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
[CrossRef] [PubMed]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

Ming, N.-B.

Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

Mizuuchi, Kiminori

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

Morikawa, Akihiro

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663-1672(1997).
[CrossRef]

Nakamura, M.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

Niemax, K.

K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
[CrossRef]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

Popov, S. V.

Sugita, Tomoya

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

Taylor, J. R.

Tu, S.-Y.

Wallenstein, R.

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

Yamamoto, Kazuhisa

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

Zhu, S. N.

Zybin, A.

K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
[CrossRef]

Anal. Chem.

K. Niemax, A. Zybin, and D. Eger, “Tunable deep blue light for laser spectrochemistry,” Anal. Chem. 73, News and Features, 134A-139A (2001).
[CrossRef]

Appl. Phys. B

J.-P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73, 111-114 (2001).

Appl. Phys. Lett.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

Y.-L. Lu, L. Mao, and N.-B. Ming, “Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching,” Appl. Phys. Lett. 64, 3092-3094 (1994).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, and K. Kitamura, “Efficient optical parametric oscillation based on periodically poled 1.0 mol.% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85, 5134-5136 (2004).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

IEEE J. Quantum Electron.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663-1672(1997).
[CrossRef]

Jpn. J. Appl. Phys.

Kiminori Mizuuchi, Akihiro Morikawa, Tomoya Sugita, and Kazuhisa Yamamoto, “Efficent second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90-L91(2003).
[CrossRef]

Mater. Sci. Eng. B

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mater. Sci. Eng. B 120, 146-149 (2005).
[CrossRef]

Opt. Lett.

Other

See, for example, www.biouvled.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated conversion efficiency from the idler to the UV for third-order SFG as a function of the temperature of PPMgSLT. The domain period is 8 μm . Crystal length is 20 mm and intensity at 532 nm is 44 MW / cm 2 . The corresponding UV wavelength is displayed on the right axis.

Fig. 2
Fig. 2

Schematic of experimental setup: OC, output coupler; I, input mirror; PBP, Pellin–Broca prism. Subscripts p, i, s, V, and UV stand for pump, idler, signal, visible, and UV.

Fig. 3
Fig. 3

Generated UV power (squares) and the corresponding tuning curve (circles) as a function of the crystal temperature. The range of wavelength covered is determined by the coating of the high-reflecting cavity mirrors.

Fig. 4
Fig. 4

Typical spectrum of the generated UV output as determined by an Ocean Optics grating spectrometer. Spectral resolution is 0.1 nm .

Fig. 5
Fig. 5

Generated UV power as a function of the incident power at 532 nm . Squares are measured values. The solid curve has a 1.83 power and is a fit to the data.

Fig. 6
Fig. 6

UV power near 333 nm generated by fifth-order QPM SFG of the pump and the signal around 893 nm .

Fig. 7
Fig. 7

Wavelength of UV output generated by non-phase-matched fifth-order mixing of 532 nm with the signal power in the OPO as a function of crystal temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 3 P 1 = 8 π 2 d eff 2 L 2 P 2 ε 0 c n 1 n 2 n 3 λ 3 2 A sin c 2 ( | Δ k | L / 2 ) ,

Metrics