Abstract

The modulation transfer functions of two types of photostimulable phosphor image plates were determined in the 10keV to 50keV x-ray energy range using a resolution test pattern with up to 10 line pairs per mm (LP/mm) and a wavelength dispersive x-ray spectrometer. Techniques were developed for correcting for the partial transmittance of the high energy x rays through the lead bars of the resolution test pattern, and the modulation transfer function (MTF) was determined from the measured change in contrast with LP/mm values. The MTF was convolved with the slit function of the image plate scanner, and the resulting point spread functions (PSFs) were in good agreement with the observed shapes and widths of x-ray spectral lines and with the PSF derived from edge spread functions. The shapes and the full width at half-maximum (FWHM) values of the PSF curves of the Fuji Superior Resolution (SR) and Fuji Maximum Sensitivity (MS) image plate detectors, consisting of the image plate and the scanner, determined by the three methods gave consistent results: The SR PSF is Gaussian with 0.13mm FWHM, and the MS PSF is Lorentzian with 0.19mm FWHM. These techniques result in the accurate determination of the spatial resolution achievable using image plate and scanner combinations and enable the optimization of spatial resolution for x-ray spectroscopy and radiography.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
    [CrossRef]
  2. J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
    [CrossRef]
  3. J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhance x-ray resolving power achieved behind the focal circles of Cauchois spectrometer,” Appl. Opt. 47, 2767-2778 (2008).
    [CrossRef] [PubMed]
  4. Y. Cauchois, “Spectrographie des rayons X par transmission d'un faisceau non canalisé a travers un cristal courbé,” J. Phys. (Paris) 3, 320-336 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.
  5. R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
    [CrossRef] [PubMed]
  6. C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
    [CrossRef] [PubMed]
  7. L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
    [CrossRef] [PubMed]
  8. Y. Amemiya, “Image plates for use with synchrotron radiation,” J. Synchrotron Rad. 2, 13-21 (1995).
    [CrossRef]
  9. H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
    [CrossRef] [PubMed]
  10. S. G. Gales and C. D. Bentley, “Image plates as x-ray detectors in plasma physics experiments,” Rev. Sci. Instrum. 75, 4001-4003 (2004).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  12. D. N. Sitter, J. S. Goddard, and R. K. Ferrell, “Method for the measurement of the modulation transfer function of sampled imaging systems for bar-target patterns,” Appl. Opt. 34, 746-751 (1995).
    [CrossRef] [PubMed]
  13. D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
    [CrossRef]
  14. D. J. Cookson, “Calculation of absolute intensities from x-ray imaging plates,” J. Synchrotron Radiat. 5, 1375-1382 (1998).
    [CrossRef]

2008

2007

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

2004

S. G. Gales and C. D. Bentley, “Image plates as x-ray detectors in plasma physics experiments,” Rev. Sci. Instrum. 75, 4001-4003 (2004).
[CrossRef]

2003

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

2002

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

1998

D. J. Cookson, “Calculation of absolute intensities from x-ray imaging plates,” J. Synchrotron Radiat. 5, 1375-1382 (1998).
[CrossRef]

1996

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

1995

1994

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

1932

Y. Cauchois, “Spectrographie des rayons X par transmission d'un faisceau non canalisé a travers un cristal courbé,” J. Phys. (Paris) 3, 320-336 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.

Amemiya, Y.

Y. Amemiya, “Image plates for use with synchrotron radiation,” J. Synchrotron Rad. 2, 13-21 (1995).
[CrossRef]

Atkin, R.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Bar-Shalom, A.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

Bentley, C. D.

S. G. Gales and C. D. Bentley, “Image plates as x-ray detectors in plasma physics experiments,” Rev. Sci. Instrum. 75, 4001-4003 (2004).
[CrossRef]

Bourgeois, D.

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

Cauchois, Y.

Y. Cauchois, “Spectrographie des rayons X par transmission d'un faisceau non canalisé a travers un cristal courbé,” J. Phys. (Paris) 3, 320-336 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.

Chantler, C. T.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

Cookson, D. J.

D. J. Cookson, “Calculation of absolute intensities from x-ray imaging plates,” J. Synchrotron Radiat. 5, 1375-1382 (1998).
[CrossRef]

Deslattes, R. D.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

Doron, R.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

Duggan, D. M.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

Ferrell, R. K.

Gales, S. G.

S. G. Gales and C. D. Bentley, “Image plates as x-ray detectors in plasma physics experiments,” Rev. Sci. Instrum. 75, 4001-4003 (2004).
[CrossRef]

Goddard, J. S.

Gonzalez, A. L.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Henins, A.

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhance x-ray resolving power achieved behind the focal circles of Cauchois spectrometer,” Appl. Opt. 47, 2767-2778 (2008).
[CrossRef] [PubMed]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

Holland, G. E.

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhance x-ray resolving power achieved behind the focal circles of Cauchois spectrometer,” Appl. Opt. 47, 2767-2778 (2008).
[CrossRef] [PubMed]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Hudson, L. T.

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhance x-ray resolving power achieved behind the focal circles of Cauchois spectrometer,” Appl. Opt. 47, 2767-2778 (2008).
[CrossRef] [PubMed]

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

Ji, H.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

Kessler, E. G.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

Kvick, Å.

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

Levin, J. C.

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

Li, H. H.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

Martin, L.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Meyerhofer, D. D.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Moy, J. P.

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

Schweppe, J. E.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

Seely, J. F.

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhance x-ray resolving power achieved behind the focal circles of Cauchois spectrometer,” Appl. Opt. 47, 2767-2778 (2008).
[CrossRef] [PubMed]

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Sitter, D. N.

Stoeckl, C.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Svensson, S. O.

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

Walker, M. D.

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Radiol.

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectrography for mammographic x-ray sources,” Br. J. Radiol. 69, 636-649 (1996).
[CrossRef] [PubMed]

J. Appl. Cryst.

D. Bourgeois, J. P. Moy, S. O. Svensson, and Å. Kvick, “The point-spread function of x-ray image-intensifiers/CCD-camera and image-plate systems in crystallography: assessment and consequences for the dynamic range,” J. Appl. Cryst. 27, 868-877 (1994).
[CrossRef]

J. Phys. (Paris)

Y. Cauchois, “Spectrographie des rayons X par transmission d'un faisceau non canalisé a travers un cristal courbé,” J. Phys. (Paris) 3, 320-336 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.

J. Quant. Spectrosc. Radiat. Transfer

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421-429 (2003).
[CrossRef]

J. Synchrotron Rad.

Y. Amemiya, “Image plates for use with synchrotron radiation,” J. Synchrotron Rad. 2, 13-21 (1995).
[CrossRef]

J. Synchrotron Radiat.

D. J. Cookson, “Calculation of absolute intensities from x-ray imaging plates,” J. Synchrotron Radiat. 5, 1375-1382 (1998).
[CrossRef]

Med. Phys.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103-111 (2007).
[CrossRef] [PubMed]

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123-126(1994).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659-1670(1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

S. G. Gales and C. D. Bentley, “Image plates as x-ray detectors in plasma physics experiments,” Rev. Sci. Instrum. 75, 4001-4003 (2004).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270-2275 (2002).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Transmittances of the resolution test pattern’s 50 μm thick Pb bars and the 2.1 mm thick plastic (CH) case.

Fig. 2
Fig. 2

Schematic of the x-ray spectrometer.

Fig. 3
Fig. 3

Spectrum recorded on an SR image plate as a function of distance from the spectrometer axis and showing the W K α and L γ spectral lines, the Ba K edge due to absorption in the image plate, and the pinhole image.

Fig. 4
Fig. 4

SR image plate spectra recorded on (a) the right side and (b) the left side of the spectrometer axis without (upper curves) and with (lower curves) the resolution test pattern. The LP / mm groups are indicated.

Fig. 5
Fig. 5

(a) Contrast recorded on the SR image plate and through the resolution test pattern on the right side of the spectrometer axis, the transmittance through the 2.1 mm thick CH case, and the product of the transmittances through the 2.1 mm CH case and the 50 μm Pb bars. The LP / mm values are indicated. (b) The contrast after correcting for the transmittances of the CH case and the Pb bars.

Fig. 6
Fig. 6

(a) Contrast recorded on the SR image plate and through the resolution test pattern on the left side of the spectrometer axis, the transmittance through the 2.1 mm thick CH case, and the product of the transmittances through the 2.1 mm CH case and the 50 μm Pb bars. (b) The contrast after correcting for the transmittances of the CH case and the Pb bars. The LP / mm values are indicated.

Fig. 7
Fig. 7

MTF of the SR and MS image plates derived from the spectra recorded using the resolution test pattern. The triangular data points are the SR MTF from Ref. 10.

Fig. 8
Fig. 8

(a) Two-sided MTF of the SR and MS image plates. (b) The point spread functions where curve 1 is for the SR image plate, 2 is for the MR image plate, 3 is the SR image plate PSF convolved with the scanner PSF, and 4 is the MS PSF convolved with the scanner PSF.

Fig. 9
Fig. 9

(a) Data points are the W L γ 1 spectral lines recorded on an SR image plate, curve 1 is the SR image plate PSF, curve 2 is the SR PSF convolved with the scanner PSF, and curve 3 is a Gaussian fitted to the data points with 0.13 mm FWHM. (b) The data points are the W L γ 1 spectral lines recorded on an MS image plate, curve 1 is the MS image plate PSF, curve 2 is the MS PSF convolved with the scanner PSF, and curve 3 is a Lorentzian fitted to the data points with 0.19 mm FWHM.

Fig. 10
Fig. 10

ESP and PSF curves for the (a) SR and (b) MS image plates. The square data points represent the change in contrast across an edge of the resolution test pattern, the ESF, and straight lines are drawn between the data points. The triangular data points represent the derivative of the ESF, the PSF. Curves were fitted to the PSF data points and are (a) Gaussian with 0.13 mm FWHM and (b) Lorentzian with 0.18 mm FWHM.

Metrics