Abstract

We demonstrate the possibility of fabricating an infrared transmitting waveguide by burying fiber in chalcogenide glasses. Two highly mature chalcogenide glasses are used for these experiments. GASIR glass from Umicore IR Glass, Olen, Belgium, with the composition of Ge22As20Se58 is used to draw fibers that are then buried in an As2S3 glass substrate. The glasses we used are compatible, and we obtained a high quality interface. We performed a transmission test with a CO2 laser at 9.3μm. The potential for extremely low loss planar waveguides is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
    [CrossRef]
  2. C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
    [CrossRef]
  3. P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
    [CrossRef]
  4. V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
    [CrossRef]
  5. C. V. M. Fridlund and F. Capaccioni, “Infrared space interferometry--the DARWIN mission,” Adv. Space Res. 30, 2135-2145 (2002).
    [CrossRef]
  6. S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
    [CrossRef]
  7. A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
    [CrossRef]
  8. L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
    [CrossRef]
  9. C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).
  10. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
    [CrossRef] [PubMed]
  11. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
    [CrossRef]

2007 (4)

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

2005 (1)

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

2004 (1)

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

2003 (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

2002 (1)

C. V. M. Fridlund and F. Capaccioni, “Infrared space interferometry--the DARWIN mission,” Adv. Space Res. 30, 2135-2145 (2002).
[CrossRef]

1998 (1)

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Adam, J.-L.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

Boesewetter, D. E.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Bonhomme, E.

C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Boussard-Plédel, C.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
[CrossRef] [PubMed]

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

Broquin, J. E.

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Bureau, B.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
[CrossRef] [PubMed]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Capaccioni, F.

C. V. M. Fridlund and F. Capaccioni, “Infrared space interferometry--the DARWIN mission,” Adv. Space Res. 30, 2135-2145 (2002).
[CrossRef]

Cheng, L. K.

Churbanov, M. F.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

Clifford, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

Collier, J.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Coulombier, Q.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

Danto, S.

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

do Carmo, J. Pereira

Faber, A. J.

Fitzpatrick, C.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

Fridlund, C. V. M.

C. V. M. Fridlund and F. Capaccioni, “Infrared space interferometry--the DARWIN mission,” Adv. Space Res. 30, 2135-2145 (2002).
[CrossRef]

Gielesen, W. L. M.

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

Houizot, P.

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
[CrossRef] [PubMed]

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

Juncker, C.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Kern, P.

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Labadie, L.

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Le Coq, D.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Le Foulgoc, K.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Le Neindre, L.

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Lewis, E.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

Lucas, J.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529-12538 (2007).
[CrossRef] [PubMed]

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Lucas, P.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Mulrooney, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

Pradel, A.

C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Riley, M. R.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Shiryaev, V. S.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

Smektala, F.

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Solis, M. A.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Van Nijnatten, P. A.

Vigreux-Bercovici, C.

C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Wilhelm, A. A.

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

Zhang, X. H.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

Zhang, X.- H.

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

S. Danto, P. Houizot, C. Boussard-Plédel, X.-H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847-1852 (2006).
[CrossRef]

Adv. Mater. (1)

A. A.Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19, 3796-3800 (2007).
[CrossRef]

Adv. Space Res. (1)

C. V. M. Fridlund and F. Capaccioni, “Infrared space interferometry--the DARWIN mission,” Adv. Space Res. 30, 2135-2145 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

C. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Transmission measurement at 10.6 μm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

J. Non-Cryst. Solids (3)

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te-As-Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113-119 (2004).
[CrossRef]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99-103 (1998).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519-523 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

C. Vigreux-Bercovici, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Selenide and telluride thick films for mid and thermal infrared applications,” J. Optoelectron. Adv. Mater. 7, 2625-2634 (2005).

Opt. Express (1)

Sens. Actuators A (1)

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A 136, 104-110 (2007).
[CrossRef]

Sens. Actuators B (1)

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B 119, 355-362 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the setup used for chalcogenide fiber burying.

Fig. 2
Fig. 2

Sample of Ge 22 As 20 Se 58 fiber buried in an As 2 S 3 substrate.

Fig. 3
Fig. 3

Interface between the fiber and the substrate observed under an optical microscope.

Fig. 4
Fig. 4

Setup for transmission experiments with a CO 2 laser.

Fig. 5
Fig. 5

(Color online) Output beam profile of the waveguide obtained by burying Ge 22 As 20 Se 58 fiber in a As 2 S 3 substrate with a 9.3 μm laser source.

Tables (1)

Tables Icon

Table 1 Physical Properties of Ge 22 As 20 Se 58 and As 2 S 3 Glasses

Metrics