Abstract

We measured the time variation of a received laser signal level during snowfall over a distance of 72m. The signal level dropped sharply for up to 10ms when a snowflake crossed the laser beam. The probability distribution of the variation due to snowfall was calculated by assuming it to be the linear superposition of the light diffracted by snowflakes. The measured distributions could be reproduced by assuming reasonable snowflake size distributions. Furthermore, the probability distributions due to snowfall over a 1km distance were calculated, and the expected bit errors during snowfall and the transmitted beam sizes were evaluated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” Proc. SPIE 1417, 484-495 (1991).
    [CrossRef]
  2. I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
    [CrossRef]
  3. B. R. Strickland, M. J. Laval, E. Woodbridge, and V. Chan, “Effects on fog on the bit-error rate of a free-space laser communication system,” Appl. Opt. 38, 424-431 (1999).
    [CrossRef]
  4. D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
    [CrossRef]
  5. M. Achour, “Simulating atmospheric free-space optical propagation part I, rainfall attenuation,” Proc. SPIE 4635, 192-201 (2002).
    [CrossRef]
  6. M. Achour, “Simulating atmospheric free-space optical propagation part II: haze, fog and low clouds attenuations,” Proc. SPIE 4873, 1-12 (2002).
    [CrossRef]
  7. I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
    [CrossRef]
  8. M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).
  9. Y. Aburakawa and T. Otsu, “Experimental evaluation of 800 nm band optical wireless link for new generation mobile radio access network,” IEICE Trans. Electron. E86-C, 1175-1183 (2003).
  10. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
    [CrossRef]
  11. K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).
  12. N. Araki and H. Yashima, “ A channel model of optical wireless communications during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205-209.
    [CrossRef]
  13. S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
    [CrossRef]
  14. P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
    [CrossRef]
  15. R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
    [CrossRef]
  16. R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
    [CrossRef]
  17. C. Magono and T. Nakamura, “Aerodynamic studies of falling snowflakes,” J. Meteorol. Soc. Jpn. 43, 139-147 (1965).

2006 (1)

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

2004 (1)

M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).

2003 (2)

Y. Aburakawa and T. Otsu, “Experimental evaluation of 800 nm band optical wireless link for new generation mobile radio access network,” IEICE Trans. Electron. E86-C, 1175-1183 (2003).

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

2002 (2)

M. Achour, “Simulating atmospheric free-space optical propagation part I, rainfall attenuation,” Proc. SPIE 4635, 192-201 (2002).
[CrossRef]

M. Achour, “Simulating atmospheric free-space optical propagation part II: haze, fog and low clouds attenuations,” Proc. SPIE 4873, 1-12 (2002).
[CrossRef]

2001 (3)

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
[CrossRef]

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

1999 (2)

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

B. R. Strickland, M. J. Laval, E. Woodbridge, and V. Chan, “Effects on fog on the bit-error rate of a free-space laser communication system,” Appl. Opt. 38, 424-431 (1999).
[CrossRef]

1998 (2)

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
[CrossRef]

1991 (1)

T. L. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” Proc. SPIE 1417, 484-495 (1991).
[CrossRef]

1979 (1)

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

1965 (1)

C. Magono and T. Nakamura, “Aerodynamic studies of falling snowflakes,” J. Meteorol. Soc. Jpn. 43, 139-147 (1965).

Aburakawa, Y.

Y. Aburakawa and T. Otsu, “Experimental evaluation of 800 nm band optical wireless link for new generation mobile radio access network,” IEICE Trans. Electron. E86-C, 1175-1183 (2003).

Achour, M.

M. Achour, “Simulating atmospheric free-space optical propagation part I, rainfall attenuation,” Proc. SPIE 4635, 192-201 (2002).
[CrossRef]

M. Achour, “Simulating atmospheric free-space optical propagation part II: haze, fog and low clouds attenuations,” Proc. SPIE 4873, 1-12 (2002).
[CrossRef]

Adhikari, P.

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Akiba, M.

M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Angus, L. J.

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
[CrossRef]

Araki, N.

N. Araki and H. Yashima, “ A channel model of optical wireless communications during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205-209.
[CrossRef]

Barclay, M.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Chan, V.

Chigai, Y.

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Cole, J.

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

DeCusatis, C.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Ghayal, G.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Grotzinger, T. L.

T. L. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” Proc. SPIE 1417, 484-495 (1991).
[CrossRef]

Hakakha, H.

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

Hayashi, T.

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Herzegh, P. H.

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

Hiromoto, N.

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Hobbs, P. V.

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

Houze, R. A.

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

Ito, S.

M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Kim, I. I.

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
[CrossRef]

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Kingsmill, D. E.

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

Koontz, J. A.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
[CrossRef]

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Larkin, M.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Laval, M. J.

Lawson, P. P.

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
[CrossRef]

Loffler-Mang, M.

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

Magono, C.

C. Magono and T. Nakamura, “Aerodynamic studies of falling snowflakes,” J. Meteorol. Soc. Jpn. 43, 139-147 (1965).

Majumdar, A. K.

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

Masters, C.

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
[CrossRef]

Moursund, C.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Myers, B.

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

Nakamura, T.

C. Magono and T. Nakamura, “Aerodynamic studies of falling snowflakes,” J. Meteorol. Soc. Jpn. 43, 139-147 (1965).

Nance, L. B.

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

Nykolak, G.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Otsu, T.

Y. Aburakawa and T. Otsu, “Experimental evaluation of 800 nm band optical wireless link for new generation mobile radio access network,” IEICE Trans. Electron. E86-C, 1175-1183 (2003).

Parsons, D. B.

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

Paulson, B.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Rasmussen, R. M.

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

Romain, D.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Ruigrok, R.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Schuster, J.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Stewart, R. E.

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
[CrossRef]

Stieger, R.

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Strickland, B. R.

Takabe, Y.

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Vivekanandan, J.

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

Wakamori, K.

M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Watabe, K.

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

Woodbridge, E.

Yashima, H.

N. Araki and H. Yashima, “ A channel model of optical wireless communications during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205-209.
[CrossRef]

Yuter, S. E.

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

Appl. Opt. (1)

IEICE Trans. Commun. (2)

M. Akiba, K. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free-space optical communications during rainfall,” IEICE Trans. Commun. E87-B, 2053-2056 (2004).

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications,” IEICE Trans. Commun. E86-B, 862-864 (2003).

IEICE Trans. Electron. (1)

Y. Aburakawa and T. Otsu, “Experimental evaluation of 800 nm band optical wireless link for new generation mobile radio access network,” IEICE Trans. Electron. E86-C, 1175-1183 (2003).

J. Appl. Meteorol. (2)

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow,” J. Appl. Meteorol. 45, 1450-1464 (2006).
[CrossRef]

R. M. Rasmussen, J. Vivekanandan, J. Cole, B. Myers, and C. Masters, “The estimation of snowfall rate using visibility,” J. Appl. Meteorol. 38, 1542-1563 (1999).
[CrossRef]

J. Atmos. Sci. (2)

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of the origin and development of very large snowflakes,” J. Atmos. Sci. 55, 3209-3229(1998).
[CrossRef]

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” J. Atmos. Sci. 36, 156-162 (1979).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

C. Magono and T. Nakamura, “Aerodynamic studies of falling snowflakes,” J. Meteorol. Soc. Jpn. 43, 139-147 (1965).

Opt. Eng. (1)

I. I. Kim, R. Stieger, J. A. Koontz, C. Moursund, M. Barclay, P. Adhikari, J. Schuster, E. Korevaar, R. Ruigrok, and C. DeCusatis, “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system,” Opt. Eng. 37, 3143-3155(1998).
[CrossRef]

Proc. SPIE (6)

T. L. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” Proc. SPIE 1417, 484-495 (1991).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26-37(2001).
[CrossRef]

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, “Optical wireless propagation, theory vs. experiment,” Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

M. Achour, “Simulating atmospheric free-space optical propagation part I, rainfall attenuation,” Proc. SPIE 4635, 192-201 (2002).
[CrossRef]

M. Achour, “Simulating atmospheric free-space optical propagation part II: haze, fog and low clouds attenuations,” Proc. SPIE 4873, 1-12 (2002).
[CrossRef]

I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” Proc. SPIE 2990, 102-113 (2001).
[CrossRef]

Other (1)

N. Araki and H. Yashima, “ A channel model of optical wireless communications during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205-209.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Time variation of normalized received signal level. For the exact definition of normalization, see text. (b) is an enlarged view of a portion of (a).

Fig. 2
Fig. 2

Probability distribution of the variation of the normalized received signal level. Measurement conditions for each graph are shown in Table 2.

Fig. 3
Fig. 3

Frequency distribution of dips with respect to minimum signal level and half width. Both graphs were developed from data acquired over 130 s on February 24, 2005. Refer to Table 2 for measurement conditions.

Fig. 4
Fig. 4

Minimum signal level of dip versus the average half width. The average half width was measured over an interval of 0.1 in minimum power width. Refer to the text for the calculated value.

Fig. 5
Fig. 5

Normalized optical power in the plane of the receiver calculated by using Fresnel diffraction. The optical power was calculated when opaque disks with diameters of 10 and 20 mm were installed in front of the transmitter. A beam having the profile given in Table 1 was used.

Fig. 6
Fig. 6

Coordinate system used for the calculation.

Fig. 7
Fig. 7

Comparison between the calculated and measured distribution of the variation of the normalized received signal level. The solid lines show the measured values shown in Fig. 2, but for clarity, the curves for 4 mm / h in 2005 and 2 mm / h in 2001 have been shifted vertically by factors of 10 and 0.1, respectively. The broken lines show the calculated values, and they have been shifted by the same amount as the measured values. The parameter sets ( n 0 , Λ ) used for the calculation are (13.2, 0.21), (64.8, 0.4), and (1800, 0.73) for the curves obtained at 4 mm / h in 2005, 4 mm / h in 2005, and 2 mm / h in 2001, respectively.

Fig. 8
Fig. 8

Size distribution of snow used for the calculations. For comparison, the values are converted to 1 mm / h by dividing them by the precipitation rate.

Fig. 9
Fig. 9

Calculated distribution of the variation of the normalized received signal level over a distance of 1 km . The precipitation rate is 1 mm / h , and the aperture of the receiver is 100 mm . The width of the laser beam at the receiver is 3 m , and the width of the beam at the transmitter is shown in the figure.

Fig. 10
Fig. 10

Calculated values of the bit error rate at a distance of 1 km . m denotes the received signal level at the peak of the distribution of the variation of the perceived signal level.

Fig. 11
Fig. 11

Relationship between minimum received signal level of a dip and average half width at a distance of 1 km (calculated values).

Tables (2)

Tables Icon

Table 1 Experimental Parameters

Tables Icon

Table 2 Environmental Conditions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p ( R , D ) Δ R = R R + Δ R n ( D ) · 2 π r 2 d r d l , R = f ( D , l , r ) / f ( 0 , l , 0 ) , n ( D ) = n 0 exp ( Λ D ) .
h ( R ) Δ R = p ( R , D ) Δ R d D .
h ( t w , P min ) Δ t w P min = t w t w + Δ t w , P min P min + Δ P min n ( D ) · v ( D ) d x d l d D .
BER ( m ) = 2 π 0 h ( s ) m · s exp ( x 2 2 σ 2 ) d x d s , 2 π 1 exp ( x 2 2 σ 2 ) d x = 10 9 ,

Metrics