Abstract

A novel electro-optic multiplier is proposed, which can perform voltage multiplication operation by use of the Kerr medium exhibiting dual transverse electro-optic Kerr effect. In this kind of Kerr medium, electro-optic phase retardation is proportional to the square of its applied electric field, and orientations of the field-induced birefringent axes are only related to the direction of the field. Based on this effect, we can design an electro-optic multiplier by selecting the crystals of 6/mmm, 432, and m3m classes and isotropic Kerr media such as glass. Simple calculation demonstrates that a kind of glass–ceramic material with a large Kerr constant can be used for the design of the proposed electro-optic multiplier.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524-1535 (1987).
    [CrossRef]
  2. H. Houtman, “Ultrafast analog computer circuits that use the Pockels effect,” Opt. Lett. 18, 1238-1240 (1993).
    [CrossRef] [PubMed]
  3. C. Li and X. Cui, “Electro-optic crystal multiplier and its application,” Chin. J. Lasers A24, 1079-1084 (1997).
  4. C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
    [CrossRef]
  5. C. Li and T. Yoshino, “Optical voltage sensor based on electro-optic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002).
    [CrossRef]
  6. C. Li, “Electro-optic crystal multiplier based on two cascaded Pockels crystals,” IEEE Photonics Technol. Lett. 16, 521-523(2004).
    [CrossRef]
  7. C. F. Buhrer, L. R. Bloom, and D. H. Baird, “Electro-optic light modulation with cubic crystal,” Appl. Opt. 2, 839-846 (1963).
    [CrossRef]
  8. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), pp. 256-262.
  9. T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
    [CrossRef]
  10. S. E. Harris and A. E. Siegman, “A technique for optical frequency translation utilizing the quadratic electro-optic effect in cubic crystals,” Appl. Opt. 3, 1089-1090 (1964).
    [CrossRef]
  11. F. K. Willisen, “A tunable birefringent filter,” Appl. Opt. 5, 97-104 (1966).
    [CrossRef]
  12. C. L. Hu, “Linear electro-optic retardation schemes for the twenty classes of linear electro-optic crystals and their applications,” J. Appl. Phys. 38, 3275-3284 (1967).
    [CrossRef]
  13. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993), Chap. 5.
  14. C. Li, “Complete polarization conversion using one crystal with dual transverse Pockels effect,” Appl. Opt. 47, 2241-2251(2008).
    [CrossRef] [PubMed]
  15. A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
    [CrossRef]
  16. D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
    [CrossRef]
  17. J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
    [CrossRef]
  18. S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

2008 (1)

2006 (1)

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

2004 (1)

C. Li, “Electro-optic crystal multiplier based on two cascaded Pockels crystals,” IEEE Photonics Technol. Lett. 16, 521-523(2004).
[CrossRef]

2003 (1)

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

2002 (1)

C. Li and T. Yoshino, “Optical voltage sensor based on electro-optic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002).
[CrossRef]

2001 (2)

C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
[CrossRef]

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

1999 (1)

T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
[CrossRef]

1997 (1)

C. Li and X. Cui, “Electro-optic crystal multiplier and its application,” Chin. J. Lasers A24, 1079-1084 (1997).

1993 (1)

1987 (1)

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524-1535 (1987).
[CrossRef]

1980 (1)

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

1967 (1)

C. L. Hu, “Linear electro-optic retardation schemes for the twenty classes of linear electro-optic crystals and their applications,” J. Appl. Phys. 38, 3275-3284 (1967).
[CrossRef]

1966 (1)

1964 (1)

1963 (1)

Baird, D. H.

Bloom, L. R.

Buhrer, C. F.

Cao, Z.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Cheng, T. C.

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993), Chap. 5.

Cooper, D. E.

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

Cui, X.

C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
[CrossRef]

C. Li and X. Cui, “Electro-optic crystal multiplier and its application,” Chin. J. Lasers A24, 1079-1084 (1997).

Cui, Y.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

Deng, X.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Gung, T. J.

T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
[CrossRef]

Harris, S. E.

Houtman, H.

Hu, C. L.

C. L. Hu, “Linear electro-optic retardation schemes for the twenty classes of linear electro-optic crystals and their applications,” J. Appl. Phys. 38, 3275-3284 (1967).
[CrossRef]

Kantak, K.

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

Kim, K. S.

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

Li, C.

C. Li, “Complete polarization conversion using one crystal with dual transverse Pockels effect,” Appl. Opt. 47, 2241-2251(2008).
[CrossRef] [PubMed]

C. Li, “Electro-optic crystal multiplier based on two cascaded Pockels crystals,” IEEE Photonics Technol. Lett. 16, 521-523(2004).
[CrossRef]

C. Li and T. Yoshino, “Optical voltage sensor based on electro-optic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002).
[CrossRef]

C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
[CrossRef]

C. Li and X. Cui, “Electro-optic crystal multiplier and its application,” Chin. J. Lasers A24, 1079-1084 (1997).

Lipovskii, A. A.

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

Luo, S.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

Shen, Q.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Siegman, A. E.

Tagantsev, D. K.

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

Tatarintsev, B. V.

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

Taylor, H. F.

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524-1535 (1987).
[CrossRef]

Ustundag, A.

T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
[CrossRef]

Vetrov, A. A.

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

Wei, W.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Willisen, F. K.

Xie, S.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Xu, Y.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), pp. 256-262.

Ye, M.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), pp. 256-262.

Yoshino, T.

C. Li and T. Yoshino, “Optical voltage sensor based on electro-optic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002).
[CrossRef]

C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
[CrossRef]

Zahn, M.

T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
[CrossRef]

Zhang, Z.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Zhou, J.

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. Zhou, X. Deng, Z. Cao, Q. Shen, W. Wei, Z. Zhang, and S. Xie, “Determination of DC Kerr coefficients of polymer films with prism-optical waveguide configuration,” Appl. Phys. Lett. 88, 021106 (2006).
[CrossRef]

Chin. J. Lasers (2)

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensor,” Chin. J. Lasers B10, 34-39 (2001).

C. Li and X. Cui, “Electro-optic crystal multiplier and its application,” Chin. J. Lasers A24, 1079-1084 (1997).

IEEE Photonics Technol. Lett. (1)

C. Li, “Electro-optic crystal multiplier based on two cascaded Pockels crystals,” IEEE Photonics Technol. Lett. 16, 521-523(2004).
[CrossRef]

IEEE Trans. Electr. Insul. (1)

D. E. Cooper, T. C. Cheng, K. S. Kim, and K. Kantak, “Kerr type electro-optic effect in solid dielectrics,” IEEE Trans. Electr. Insul. EI-15, 294-300 (1980).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. L. Hu, “Linear electro-optic retardation schemes for the twenty classes of linear electro-optic crystals and their applications,” J. Appl. Phys. 38, 3275-3284 (1967).
[CrossRef]

J. Electrost. (1)

T. J. Gung, A. Ustundag, and M. Zahn, “Preliminary Kerr electro-optic field mapping measurements in propylene carbonate using point-plane electrodes,” J. Electrost. 46, 79-89(1999).
[CrossRef]

J. Lightwave Technol. (1)

C. Li and T. Yoshino, “Optical voltage sensor based on electro-optic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002).
[CrossRef]

J. Non-Cryst. Solids (1)

A. A. Lipovskii, D. K. Tagantsev, B. V. Tatarintsev, and A. A. Vetrov, “The origin of electro-optical sensitivity of glassy materials: crystal motifs in glasses,” J. Non-Cryst. Solids 318, 268-283 (2003).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524-1535 (1987).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), pp. 256-262.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the orientations of the field-induced principal axes ( x and y ) of a Kerr medium and its two applied electric fields ( E x and E y ).

Fig. 2
Fig. 2

Schematic of the electro-optic multiplier based on dual transverse electro-optic Kerr effect, where u x and u y are the two voltages applied to the Kerr medium. P is a polarizer, QW is a quarter-wave plate, and PBS is a polarization beam splitter.

Tables (1)

Tables Icon

Table 1 Electro-Optic Retardation γ and Azimuth Angle θ of the Field-Induced Principal Axis for Some Kerr Media Caused by Electro-Optic Kerr Effect

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( 1 n o 2 + s 11 E x 2 + s 12 E y 2 ) x 2 + ( 1 n o 2 + s 12 E x 2 + s 11 E y 2 ) y 2 + 2 ( s 11 s 12 ) E x E y x y = 1 ,
γ = Γ e = π λ n o 3 l ( s 11 s 12 ) E m 2 = C 0 E m 2 .
tan ( 2 θ ) = 2 E x E y E x 2 E y 2 = 2 tan β 1 tan 2 β = tan ( 2 β ) .
θ = β .
E x E y = E m 2 sin β cos β = 1 2 E m 2 sin ( 2 β ) .
E x E y = 1 2 C 0 γ sin ( 2 θ ) .
m 24 = m 42 = sin γ sin ( 2 θ ) γ sin ( 2 θ ) = 2 C 0 E x E y .
S o = M ( γ , θ ) · S i = [ 0 sin γ sin ( 2 θ ) sin γ cos ( 2 θ ) cos γ ] T .
( 1 n o 2 + r 11 E x + s 11 E x 2 + s 12 E y 2 ) x 2 + ( 1 n o 2 r 11 E x + s 12 E x 2 + s 11 E y 2 ) y 2 + 2 [ r 11 E y + ( s 11 s 12 ) E x E y ] x y = 1 ,
γ = π n o 3 l λ [ ( 2 r 11 E m ) 2 + ( s 11 s 12 ) 2 E m 4 + 4 r 11 E x ( s 11 s 12 ) ( E x 2 3 E y 2 ) ] 1 / 2 ,
tan ( 2 θ ) = 2 r 11 E y + ( s 11 s 12 ) E x E y 2 r 11 E x + ( s 11 s 12 ) ( E x 2 E y 2 ) .

Metrics