Abstract

Theoretical analysis shows that, to improve the resolution and the range of the field of view of the reconstructed image in digital lensless Fourier transform holography, an effective solution is to increase the area and the pixel number of the recorded digital hologram. A new approach based on the synthetic aperture technique and use of linear CCD scanning is presented to obtain digital holographic images with high resolution and a wide field of view. By using a synthetic aperture technique and linear CCD scanning, we obtained digital lensless Fourier transform holograms with a large area of 3.5cm×3.5cm (5000×5000 pixels). The numerical reconstruction of a 4mm object at a distance of 14cm by use of a Rayleigh–Sommerfeld integral shows that a theoretically minimum resolvable distance of 2.57μm can be achieved at a wavelength of 632.8nm. The experimental results are consistent with the theoretical analysis.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004).
    [CrossRef] [PubMed]
  2. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
    [CrossRef] [PubMed]
  3. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  4. W. Haddad, J. C. S. D. Cullen, J. M. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973-4978 (1992).
    [CrossRef] [PubMed]
  5. Y. Takaki and H. Ohzu, “Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204-2211 (1999).
    [CrossRef]
  6. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
    [CrossRef]
  7. L. F. Yu, Y. F. An, and L. L. Cai, “Numerical reconstruction of digital holograms with variable viewing angles,” Opt. Express 10, 1250-1257 (2002).
    [PubMed]
  8. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  9. L. F. Yu and Z. P. Chen, “Improved tomographic imaging of wavelength scanning digital holographic microscopy by use of digital spectral shaping,” Opt. Express 15, 878-886 (2007).
    [CrossRef] [PubMed]
  10. J. L. Zhao, H. Z. Jiang, and J. L. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514-2519(2008).
    [CrossRef] [PubMed]
  11. P. Picart, D. Mounier, and L. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33, 276-278(2008).
    [CrossRef] [PubMed]
  12. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [CrossRef]
  13. B. Javidi and D. Kim, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Opt. Lett. 30, 236-238 (2005).
    [CrossRef] [PubMed]
  14. A. Stern and B. Lavidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007).
    [CrossRef]
  15. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288-7293 (1999).
    [CrossRef]
  16. J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
    [CrossRef]
  17. T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
    [CrossRef]
  18. T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
    [CrossRef] [PubMed]
  19. T. C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  20. T. C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
    [CrossRef]
  21. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  22. L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  23. L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444-2452 (2005).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

2006 (2)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (3)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

T. C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

1999 (4)

1995 (1)

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

1992 (1)

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

An, Y. F.

Asundi, A.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Boyer, K.

Cai, L. L.

Chen, Z. P.

Coppola, G.

Cuche, E.

Cullen, J. C. S. D.

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Depeursinge, C.

Desse, L. M.

Di, J. L.

Doh, K. B.

T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Guo, Z. X.

Gusev, M. E.

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Haddad, W.

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Javidi, B.

Jiang, H. Z.

Kim, D.

Kim, M. K.

Kim, T.

Lavidi, B.

Li, J. F.

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Longworth, J. M.

Lu, H. Q.

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Ma, Y. H.

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Marquet, P.

Massig, J. H.

Matoba, O.

McPherson, A.

Miao, J. M.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Mounier, D.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Ohzu, H.

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Osten, W.

Pedrini, G.

Peng, X. Y.

Picart, P.

Pierattini, G.

Poon, T. C.

T. C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

T. C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Rhodes, C. K.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Schilling, B. W.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Shinoda, K. K.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Song, X. S.

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Stern, A.

Suzuki, Y.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Takaki, Y.

Wu, M. H.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Xu, L.

Yu, L. F.

Zhao, J. L.

J. L. Zhao, H. Z. Jiang, and J. L. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514-2519(2008).
[CrossRef] [PubMed]

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

J. Holography Speckle (1)

T. C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249, 493-499 (2005).
[CrossRef]

Opt. Eng. (1)

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for recording lensless Fourier transform holograms based on a synthetic aperture technique and use of linear CCD scanning.: BS 1 , BS 2 , beam splitters; M 1 , M 2 , mirrors; MO 1 , MO 2 , microscope objectives; PH 1 , PH 2 , pinholes; L, lens; CCD, linear CCD camera; PTS, precision translation stage.

Fig. 2
Fig. 2

Illustration of the hologram recording process based on the synthetic aperture technique and use of linear CCD scanning.

Fig. 3
Fig. 3

Principle of lensless Fourier transform holography.

Fig. 4
Fig. 4

Minimum resolvable distance δ versus recording distance d and CCD size L H .

Fig. 5
Fig. 5

Digital lensless Fourier transform hologram recorded based on the synthetic aperture technique and use of linear CCD scanning.

Fig. 6
Fig. 6

Reconstructed holographic image: (a) original holographic image; (b) magnification of group 25 in (a); (c) partial magnification of (b).

Fig. 7
Fig. 7

Reconstruction results for the holograms of a 2# test target recorded at different distances d: (a) 17.5, (b) 27.5, (c) 37.5, (d) 47.5 cm.

Fig. 8
Fig. 8

Reconstruction results for the holograms of a 2# test target with different numbers of pixels: (a) 3000 x 3000 and (b) 1000 x 1000.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x = x 0 + d α = x 0 + λ d f 0 ,
L = S 0 + λ d W 0 .
W 4 S 0 λ d .
SW = LW 4 SW 0 + 4 S 0 2 λ d .
SW H = L H Δ x = L H W H ,
d 4 S 0 Δ x λ .
U ( x , y ) = 1 i λ O ( x 0 , y 0 ) exp ( i k r ) r d r d x 0 d y 0 ,
r [ x 2 + y 2 + d 2 ] 1 / 2 [ 1 x x 0 + y y 0 x 2 + y 2 + d 2 ] .
f x = x λ ( x 2 + y 2 + d 2 ) 1 / 2 , f y = y λ ( x 2 + y 2 + d 2 ) 1 / 2 ,
U ( x , y ) = d exp [ i k ( x 2 + y 2 + d 2 ) 1 / 2 ] i λ ( x 2 + y 2 + d 2 ) O ( f x , f y ) ,
R ( x , y ) = d exp [ i k ( x 2 + y 2 + d 2 ) 1 / 2 ] i λ ( x 2 + y 2 + d 2 ) C ,
I ( x , y ) = | U ( x , y ) + R ( x , y ) | 2 = d 2 λ 2 ( x 2 + y 2 + d 2 ) 2 [ C * O ( f x , f y ) + C O * ( f x , f y ) + | C | 2 + | O ( f x , f y ) | 2 ] .
δ = 1 2 f = λ 1 2 + ( d L H ) 2 .

Metrics