Abstract

We have theoretically proposed and experimentally demonstrated a new kind of ultranarrow identical-dual-bandpass sampled fiber Bragg gratings (SFBGs) with a π phase shift technique. The spacing of two bandpasses of the proposed grating can be flexibly adjusted by changing the sampled period, and any desired spacing can be achieved in principle. An experimental example shows that the transmission peaks of two narrow transmission-band are near 1549.1 and 1550.1nm. Based on the proposed SFBG, an ultranarrow identical-dual-channel filter is designed. Two channels of the proposed filter have an equal bandwidth, an even strength, and the same group delay. The bandwidth of each channel of our filter is as small as 1pm and up to 103pm (corresponding to 0.1MHz), which is less than the bandwidth of the conventional SFBG filters by a factor of 102104. The proposed grating and filter can find potential applications with slow light and dual-wavelength single-longitudinal-mode fiber lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosenthal, M. Horowitz, S. Kieckbusch, and E. Brinkmeyer, “Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering,” J. Opt. Soc. Am. A 24, 3284-3288 (2007).
    [CrossRef]
  2. S. M. Al-Marzoug and R. J. W. Hodgson, “Luus-Jaakola optimization procedure for phase-only sampled-fiber Bragg gratings,” Appl. Opt. 47, 2275-2280 (2008).
    [CrossRef] [PubMed]
  3. E. Bélanger, B. Déry, M. Bernier, J.-P. Bérubé, and R. Vallée, “Long-term stable device for tuning fiber Bragg gratings,” Appl. Opt. 46, 3189-3195 (2007).
    [CrossRef] [PubMed]
  4. X. Zhu, Y. Lu, G. Zhang, C. Wang, and M. Zhao, “Analytical determination of reflection-peak wavelengths of chirped sampled fiber Bragg gratings,” Appl. Opt. 47, 1135-1140(2008).
    [CrossRef] [PubMed]
  5. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142-147 (2005).
    [CrossRef] [PubMed]
  6. S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, “Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband >35 nm and compact tunable dispersion compensator,” J. Opt. Soc. Am. B 25, 210-217 (2008).
    [CrossRef]
  7. X.-F. Huang, Z.-M. Chen, L.-Y. Shao, K.-F. Cen, D.-R. Sheng, J. Chen, and H. Zhou, “Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating,” Appl. Opt. 47, 504-511 (2008).
    [CrossRef] [PubMed]
  8. H. P. Li, M. Li, Y. L. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).
    [CrossRef]
  9. N. K. Berger, B. Levit, and B. Fischer, “Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings,” Electron. Lett. 43, 665-667 (2007).
    [CrossRef]
  10. J. Bland-Hawthorn, A. Buryak, and K. Kolossovski, “Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters,” J. Opt. Soc. Am. A 25, 153-158(2008).
    [CrossRef]
  11. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
    [CrossRef]
  12. X. Liu, Y. Gong, L. Wang, T. Wang, T. Zhang, K. Lu, and W. Zhao, “Identical dual-wavelength fiber Bragg gratings,” J. Lightwave Technol. 25, 2706-2710 (2007).
    [CrossRef]
  13. Y. Liu, L. Wei, and J. W. Y. Lit, “Transmission loss of phase-shifted fiber Bragg gratings in lossy materials: a theoretical and experimental investigation,” Appl. Opt. 46, 6770-6773(2007).
    [CrossRef] [PubMed]
  14. J. Canning and M. Sceats, “π phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344-1345 (1994).
    [CrossRef]
  15. L. Xia, P. Shum, and C. Lu, “Phase-shifted bandpass filter fabrication through CO2 laser irradiation,” Opt. Express 13, 5878-5882 (2005).
    [CrossRef] [PubMed]
  16. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
    [CrossRef]
  17. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]
  18. L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
    [CrossRef]
  19. J. B. Khurgin, “Light slowing down in Moire fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
    [CrossRef]
  20. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
    [CrossRef]
  21. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
    [CrossRef]
  22. K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, and D. Y. Stepanov, “Three-step design optimization for multi-channel fiber Bragg gratings,” Opt. Express 11, 1029-1038 (2003).
    [CrossRef] [PubMed]
  23. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
    [CrossRef]

2008

2007

2005

2004

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

2003

2000

J. B. Khurgin, “Light slowing down in Moire fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[CrossRef]

1999

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
[CrossRef]

1998

L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

1995

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

1994

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

J. Canning and M. Sceats, “π phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

Adachi, J.

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Al-Marzoug, S. M.

Baba, A.

Bélanger, E.

Belmonte, M.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, and B. Fischer, “Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings,” Electron. Lett. 43, 665-667 (2007).
[CrossRef]

Bernier, M.

Bérubé, J.-P.

Bland-Hawthorn, J.

Brinkmeyer, E.

Buryak, A.

Buryak, A. V.

Canning, J.

J. Canning and M. Sceats, “π phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

Cen, K.-F.

Chen, J.

Chen, L. R.

L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
[CrossRef]

Chen, X.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Chen, Z.-M.

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Cooper, D. F.

L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
[CrossRef]

Dai, Y.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Déry, B.

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
[CrossRef]

Fischer, B.

N. K. Berger, B. Levit, and B. Fischer, “Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings,” Electron. Lett. 43, 665-667 (2007).
[CrossRef]

Galzerano, G.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Gong, Y.

Hodgson, R. J. W.

Horowitz, M.

Huang, X.-F.

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Itou, A.

Janner, D.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Jiang, D.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Light slowing down in Moire fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Kieckbusch, S.

Kolossovski, K.

Kolossovski, K. Y.

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Laporta, P.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Leminger, O.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Levit, B.

N. K. Berger, B. Levit, and B. Fischer, “Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings,” Electron. Lett. 43, 665-667 (2007).
[CrossRef]

Li, H. P.

Li, M.

Lit, J. W. Y.

Liu, H.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Liu, X.

Liu, Y.

Longhi, S.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Lu, C.

Lu, F.

Lu, K.

Lu, Y.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
[CrossRef]

Ng, J.

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Rosenthal, A.

Rothenberg, J. E.

Sammut, R. A.

Sceats, M.

J. Canning and M. Sceats, “π phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

Shao, L.-Y.

Sheng, D.-R.

Sheng, Y. L.

Shum, P.

Smith, P. W. E.

L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
[CrossRef]

Stepanov, D. Y.

Valle, G. Della

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Vallée, R.

Wakabayashi, S.

Wang, C.

Wang, L.

Wang, T.

Wei, L.

Xia, L.

Xie, S.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Yang, X.

Zengerle, R.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
[CrossRef]

Zhang, G.

Zhang, T.

Zhao, M.

Zhao, W.

Zhou, H.

Zhou, X.

Zhu, X.

Appl. Opt.

Electron. Lett.

J. Canning and M. Sceats, “π phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

N. K. Berger, B. Levit, and B. Fischer, “Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings,” Electron. Lett. 43, 665-667 (2007).
[CrossRef]

IEEE J. Quantum Electron.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115(1999).
[CrossRef]

IEEE Photon. Technol. Lett.

L. R. Chen, D. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10, 1283-1285(1998).
[CrossRef]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

IEEE Photonics Technol. Lett.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10, 842-844 (1998).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. A

J. B. Khurgin, “Light slowing down in Moire fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Phys. Rev. E

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of SFBG spatial configuration (a) without a π phase shift and (b) with a π phase shift at the center of grating. In (a), the nongrating gap within each sampled period is the same as L g . In (b), the nongrating gap at the center of grating is L g + Δ L , where Δ L corresponds to a π phase shift.

Fig. 2
Fig. 2

Relationships of Δ t versus δ n ¯ eff (the left y axis) and transmission loss α versus δ n ¯ eff (the right y axis).

Fig. 3
Fig. 3

Transmission spectrum of SFBGs (a) without and (b) with a π phase shift. δ n ¯ eff = 1.0 × 10 4 and Δ t 0.071 .

Fig. 4
Fig. 4

Transmission spectrum for the proposed identical-dual-bandpass SFBG. (b) is the local zoom of (a) at the component m = 1 .

Fig. 5
Fig. 5

(a) Schematic configuration for the proposed ultranarrow dual-channel filter, (b) the transmission spectrum at C-port, (c) the transmission spectrum at D-port. The transmission spectrum at B-port is shown in Fig. 3a.

Fig. 6
Fig. 6

Group delay of the proposed filter. All parameters are the same as in Fig. 5c.

Fig. 7
Fig. 7

Relationship between bandwidth of identical-dual-channel filter and δ n ¯ eff . The bold curve corresponds to the bandwidth of filter based on Fig. 1a (the left y axis), and the thin curve is the bandwidth of the proposed filter (the right y axis).

Fig. 8
Fig. 8

Transmission spectra of the proposed filters: (a)  L 1 = 2.78305 mm , δ n ¯ eff = 0.2 × 10 4 , and Δ t 0.0717 ; (b)  L 1 = 0.27831 mm , δ n ¯ eff = 1.5 × 10 4 , and Δ t 0.0524 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L g = L 1 2 + ( 1 + Δ t ) Λ 2 ,
Δ λ = λ 2 4 n eff L 2 ,

Metrics