Abstract

This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45°. For water reflectance Rw of 40% at 45° in the the W-band, this implies a theoretical effective aperture emissivity of (1Rws2Rwp2)>98.8%. From the the W-band to 450GHz, the maximum radiometric temperature uncertainty is ±0.40K, independent of water temperature. Uncertainty from 450GHz to 1THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of 3K at 1THz.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
    [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
    [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
    [CrossRef]
  4. J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
    [CrossRef]
  5. K. Foster and T. Hewison, “The absolute calibration of total power millimeter-wave airborne radiometers,” in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 1998), pp. 384-386.
  6. C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004).
    [CrossRef]
  7. J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993).
    [CrossRef]
  8. I. M. Mason, P. H. Sheather, J. A. Bowles, and G. Davies, “Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer,” Appl. Opt. 35, 629-639 (1996).
    [CrossRef] [PubMed]
  9. A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” http://physics.nist.gov/Pubs/TN1421/contents.html.
  10. H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
    [CrossRef]
  11. G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).
  12. F. Hengstberger, Absolute Radiometry (Academic, 1989).
  13. E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .
  14. M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
    [CrossRef]
  15. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metal mesh bandpass filters for the far-infrared,” Appl. Opt. 33, 6046-6052(1994).
    [CrossRef] [PubMed]
  16. R. H. Giles and T. M. Horgan, “Method for absorbing radiation,” U.S. patent 5,260,513 (9 November, 1993).
  17. P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
    [CrossRef] [PubMed]
  18. P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.
  19. A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465.
    [CrossRef]
  20. J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100, 591-599(1995).
  21. E. F. Zalewski and C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867-2873(1983).
    [CrossRef] [PubMed]
  22. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
    [CrossRef]
  23. J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 33, 5914-5918 (1994).
    [CrossRef] [PubMed]
  24. J. H. Lehman and C. L. Cromer, “Optical trap detector for calibration of optical fiber powermeters: coupling efficiency,” Appl. Opt. 41, 6531-6536 (2002).
    [CrossRef] [PubMed]
  25. J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000).
    [CrossRef]
  26. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996).
    [CrossRef]
  27. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (NIST, 1994).
  28. Central Bureau of the International Electrotechnical Commission, “Industrial platinum resistance thermometer sensors,” International Electrotechnical Commission (IEC) Publ. 751 (IEC,1996).
  29. G. Zhao, M. ter Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19, 1476-1479 (2002).
    [CrossRef]
  30. J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).
  31. C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
    [CrossRef]
  32. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).
  33. E. L. Shirley, “Revised formulas for diffraction effects with point and extended sources,” Appl. Opt. 37, 6581-6590 (1998).
    [CrossRef]
  34. E. L. Shirley, “Fraunhofer diffraction effects on total power for a Planckian source,” J. Res. Natl. Inst. Stand. Technol. 106, 775-779 (2001).
  35. H. B. Wallace, “AEM” software.

2007 (2)

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

2005 (2)

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

2004 (2)

C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
[CrossRef]

2003 (1)

H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

2002 (3)

2001 (1)

E. L. Shirley, “Fraunhofer diffraction effects on total power for a Planckian source,” J. Res. Natl. Inst. Stand. Technol. 106, 775-779 (2001).

2000 (2)

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000).
[CrossRef]

1998 (1)

1997 (1)

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

1996 (2)

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996).
[CrossRef]

I. M. Mason, P. H. Sheather, J. A. Bowles, and G. Davies, “Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer,” Appl. Opt. 35, 629-639 (1996).
[CrossRef] [PubMed]

1995 (1)

J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100, 591-599(1995).

1994 (2)

1993 (1)

J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993).
[CrossRef]

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

1983 (1)

1979 (1)

P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
[CrossRef] [PubMed]

Alexanian, A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

Allen, S. J.

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

Astrand, P.-O.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Barnes, P. Y.

H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

Bennett, J. M.

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

Billinger, R. L.

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

Bjarnason, J. E.

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

Bowles, J. A.

Brown, E. R.

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Cox, A. E.

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465.
[CrossRef]

Cromer, C. L.

J. H. Lehman and C. L. Cromer, “Optical trap detector for calibration of optical fiber powermeters: coupling efficiency,” Appl. Opt. 41, 6531-6536 (2002).
[CrossRef] [PubMed]

J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000).
[CrossRef]

Crowe, T. W.

Davies, G.

Densing, R.

Dietlein, C.

E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .

Duda, C. R.

Fedor, L. S.

J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993).
[CrossRef]

Filipkowski, M.

C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004).
[CrossRef]

Foster, K.

K. Foster and T. Hewison, “The absolute calibration of total power millimeter-wave airborne radiometers,” in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 1998), pp. 384-386.

Fowler, J. B.

J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100, 591-599(1995).

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

Fraser, G. T.

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

Gardner, J. L.

Gibson, C. E.

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

Giles, R. H.

R. H. Giles and T. M. Horgan, “Method for absorbing radiation,” U.S. patent 5,260,513 (9 November, 1993).

Goldsmith, P. F.

P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
[CrossRef] [PubMed]

Goy, P.

P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.

Grossman, E. N.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .

Hengstberger, F.

F. Hengstberger, Absolute Radiometry (Academic, 1989).

Hesler, J. L.

Hewison, T.

K. Foster and T. Hewison, “The absolute calibration of total power millimeter-wave airborne radiometers,” in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 1998), pp. 384-386.

Horgan, T. M.

R. H. Giles and T. M. Horgan, “Method for absorbing radiation,” U.S. patent 5,260,513 (9 November, 1993).

Iwasaki, R. T.

P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
[CrossRef] [PubMed]

Keiding, S. R.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Kemp, M.

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Kindt, J. T.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996).
[CrossRef]

Kot, R. A.

P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
[CrossRef] [PubMed]

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (NIST, 1994).

Lehman, J. H.

J. H. Lehman and C. L. Cromer, “Optical trap detector for calibration of optical fiber powermeters: coupling efficiency,” Appl. Opt. 41, 6531-6536 (2002).
[CrossRef] [PubMed]

J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000).
[CrossRef]

Luukanen, A.

E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .

MacDonald, M. E.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

Mason, I. M.

Mattsson, L.

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

Mikkelsen, K. V.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Mueller, E. R.

O'Connell, J. J.

A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465.
[CrossRef]

Parr, A. C.

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” http://physics.nist.gov/Pubs/TN1421/contents.html.

Pepper, M.

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Planken, P. C. M.

Plaxco, K. W.

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

Popovic, Z.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

Porterfield, D. W.

Randa, J.

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

Rice, J.

A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465.
[CrossRef]

Rønne, C.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Schmuttenmaer, C. A.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996).
[CrossRef]

Shaw, J. A.

J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993).
[CrossRef]

Sheather, P. H.

Shirley, E. L.

E. L. Shirley, “Fraunhofer diffraction effects on total power for a Planckian source,” J. Res. Natl. Inst. Stand. Technol. 106, 775-779 (2001).

E. L. Shirley, “Revised formulas for diffraction effects with point and extended sources,” Appl. Opt. 37, 6581-6590 (1998).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.

Stickley, C. M.

C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004).
[CrossRef]

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (NIST, 1994).

ter Mors, M.

Thrane, L.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Tuffias, R. H.

P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.

Walker, D. K.

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

Wallace, H. B.

H. B. Wallace, “AEM” software.

Wallqvist, A.

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

Weikle, and R. M.

Wenckebach, T.

Woolard, D. W.

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Xu, J.

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

Yoon, H. W.

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

York, R. A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

Zalewski, E. F.

Zhao, G.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).

IEEE Trans. Geosci. Remote Sens. (1)

J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
[CrossRef]

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000).
[CrossRef]

J. Chem. Phys. (1)

C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (3)

J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100, 591-599(1995).

E. L. Shirley, “Fraunhofer diffraction effects on total power for a Planckian source,” J. Res. Natl. Inst. Stand. Technol. 106, 775-779 (2001).

G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).

Metrologia (3)

H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000).
[CrossRef]

Opt. Eng. (1)

J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993).
[CrossRef]

Proc. IEEE (1)

D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Proc. SPIE (1)

C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979).
[CrossRef] [PubMed]

Other (11)

P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.

A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465.
[CrossRef]

R. H. Giles and T. M. Horgan, “Method for absorbing radiation,” U.S. patent 5,260,513 (9 November, 1993).

F. Hengstberger, Absolute Radiometry (Academic, 1989).

E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .

A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” http://physics.nist.gov/Pubs/TN1421/contents.html.

K. Foster and T. Hewison, “The absolute calibration of total power millimeter-wave airborne radiometers,” in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 1998), pp. 384-386.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (NIST, 1994).

Central Bureau of the International Electrotechnical Commission, “Industrial platinum resistance thermometer sensors,” International Electrotechnical Commission (IEC) Publ. 751 (IEC,1996).

H. B. Wallace, “AEM” software.

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Trimetric view of the simplified ABC source geometry. The entrance aperture is defined by the square annulus in the 0 , 0 , 1 plane, the darker planes ( 1 , 1 , 0 and 1 , 0 , 1 ) represent water surfaces, and the light gray plane ( 0 , 1 , 0 ) corresponds to the ideal mirror. The ray indicated by the thick dashed line enters the center of the aperture normally and is incident on the center of each water surface and the mirror. Omitted for clarity is the return path following the same ray path, providing two more reflections from water surfaces before exiting the aperture.

Fig. 2
Fig. 2

Trimetric rendering of the manufactured ABC source. The 20 cm × 20 cm entrance aperture is highlighted by the dashed square and translucent overlay, and the geometric path is indicated by the heavy solid lines. The mirror is omitted for clarity.

Fig. 3
Fig. 3

Contour plots of performance for the manufactured geometry. Contour values are linear return loss, for f = 200 GHz , using the model parameters for water from [26]. Note that for the plots on the left, the coordinates of the abscissas are reversed from standard to match the notation shown in Fig. 1. Both plots on the right, where Y is the abscissa, can be rotated 90 ° counterclockwise to match Fig. 1. The contour values are not evenly spaced, due to rapidly changing values near the plot edges; additionally, the central region in each plot is shaded to illustrate locations and orientations of high performance, the “sweet spot.”

Fig. 4
Fig. 4

Transmission through 1 cm thick EPS at normal incidence. f > 600 GHz measured with an FT-IR spectrometer, and from f = 75 GHz to f = 200 GHz measured with a tunable Gunn diode and commercial powermeter. Combined data are smoothed by a moving-average filter with a 10% span and fit to y = 1 / 2 { 1 + erf [ ( x μ ) / ( σ 2 ) ] } , and the region between f = 200 GHz and f = 600 GHz is interpolated. The inset shows measured data in the W-band.

Fig. 5
Fig. 5

Calculated water reflectance R w at an incidence angle of 45 ° plotted through the frequency range of interest for polarized and unpolarized radiation at two physical temperatures.

Fig. 6
Fig. 6

Sketches (to scale) of ideal unfolded geometry (a) and nonideal geometry with convex second reflection surface (b). The red (online) rays are the central rays, the blue rays are centered in the entrance aperture but rotated 5 ° from normal, and the green rays are normal to the aperture but offset from the center by 2.5 cm . The deflection at the center of the nonideal curved surface is 4 mm from the ideal flat surface. It is clear that the rays entering the aperture at the off-normal angle are affected the most by the deflected water surface. Note that besides the obvious translation for the off-center and off-normal incident rays, the ray triplets upon exiting are twice their initial separation.

Fig. 7
Fig. 7

Radiometric temperature correction (thick solid line) as a function of frequency for a common signal strength of T w T 0 = 40 K , where T w = 333 K . The error bars below f = 250 GHz are obtained from the reported uncertainty in the double-Debye water model fit parameters from [26, 31], and the error bars above f = 300 GHz are due to the unknown balance between absorption and scattering in the EPS. The dashed lines indicate the corrections that would occur, rather than uncertainty, if A e were known to be 25%, 50%, or 100% absorption, from top to bottom.

Fig. 8
Fig. 8

Measured reflectance maps for mirror surfaces (top) and water surface (bottom). The maps are scaled to fit the size of the entrance aperture; the source and focusing lenses block the leftmost 12 cm of the entrance aperture, with the nominal specular reflection in the rightmost 8 cm (the mappable region). Lens shadow can be seen (top), as well as the distorted and displaced beam (bottom) due to the curved water surface (Fig. 6).

Tables (4)

Tables Icon

Table 1 Atmospheric Bands Below f = 1 THz Where Attenuation Exceeds 2% a

Tables Icon

Table 2 Uncertainty Budget: Uncertainty in T r Due to Uncertainties in Parameters of Eq. (A1) for T w = 333 K and T 0 = 293 K

Tables Icon

Table 4 Summary of Reflectance Measurements

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R m 1 2 4 π f ϵ 0 σ ,
T r ( i ) = ( 1 A e ) T r ( i 1 ) + A e T e for     transmission through an EPS layer at temperature   T e , T r ( i ) = R w ( s , p ) ( i 1 ) + ( 1 R w ( s , p ) ) T w for     s ( p )    reflection off an EPS-water interface , and T r ( i ) = R m T r ( i 1 ) + ( 1 R m ) T m for     reflection off an imperfect mirror at temperature   T m .
T r V = T w V ( 1 A e ) [ ( 1 R w s ) + ( 1 R w p ) R w s ( 1 A e ) 2 + ( 1 R w p ) R w p R w s R m ( 1 A e ) 4 + ( 1 R w s ) R w p 2 R w s R m ( 1 A e ) 6 ] + T e V A e { 1 + R w s [ ( 1 A e ) + ( 1 A e ) 2 ] + R w p R w s ( 1 A e ) 3 + R w p R w s R m ( 1 A e ) 4 + R w p 2 R w s R m [ ( 1 A e ) 5 + ( 1 A e ) 6 ] + R w p 2 R w s 2 R m ( 1 A e ) 7 } + T m V A m R w s R w p ( 1 A e ) 4 + T 0 V R w p 2 R w s 2 R m ( 1 A e ) 8 .
T r V = T w V ( 1 A e ) [ ( 1 R w s ) + ( 1 R w p ) R w s ( 1 2 A e ) + ( T w V + T 0 V 2 ) [ 1 + R w s ( 2 3 A e ) + R w p R w s ( 1 3 A e ) + R m R w p R w s ( 1 4 A e ) + R m R w p 2 R w s ( 2 11 A e ) + R m R w s 2 R w p 2 ( 1 7 A e ) ] + T 0 V A m R w s R w p ( 1 4 A e ) + T 0 V R w p 2 R w s 2 R m ( 1 8 A e ) .
| T r V A e | Δ A e = Δ A e [ T 0 V R w s ( 3 + 7 R w p + 11 R w p 2 + 23 R w p 2 R w s ) / 2 T w s ( 2 + 7 R w V 8 A e R w s + 11 R w p R w s 8 A e R w p R w s + 15 R w p 2 R w s 8 A e R w p 2 R w s 7 R w p 2 R w s 2 + 24 A e R w p 2 R w s 2 ) / 2 ] ,
| T r V A m | Δ A m = Δ A m [ T w s R w p R w s ( 3 2 R w p + R w p R w s ) / 2 T 0 s R w p R w s ( 1 + 2 R w p + 3 R w p R w s ) / 2 ] .
T r T w = R w s 2 R w p 2 ( T w T 0 )
| T r V R w s | Δ R w = Δ R w [ T 0 s ( 1 + R w p + R w p 2 + 3 R w p 2 R w s ) T w s ( 1 R w p R w p 2 + R w p 2 R w s ) ] ,
| T r V T w V | Δ T w = Δ T w ( 3 / 2 + R w s + R w p R w s + R w p 2 R w s R w p 2 R w s 2 / 2 ) ,

Metrics