Abstract

A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Forster and K. P. Shine, “Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling,” Geophys. Res. Lett. 26, 3309-3312 (1999).
    [CrossRef]
  2. S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995).
    [CrossRef]
  3. “Assessment of upper tropospheric and stratospheric water vapor,” in SPARC Report No 2, D. Kley, J. M. Russell, III, and C. Phillips, eds. (Stratospheric Processes and Their Role in Climate, 2000).
  4. M. J. Kurylo, “Network for the detection of stratospheric change,” Proc. SPIE 1491, 168-174 (1991).
    [CrossRef]
  5. G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
    [CrossRef]
  6. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838-5850 (1999).
    [CrossRef]
  7. D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
    [CrossRef]
  8. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979-4990 (1998).
    [CrossRef]
  9. T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published).
    [CrossRef]
  10. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Methodology for the independent calibration of Raman backscatter water vapor lidar systems,” Appl. Opt. 38, 5816-5837 (1999).
    [CrossRef]
  11. U. Wandlinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241-271.
  12. A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.
  13. H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
    [CrossRef]
  14. V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
    [CrossRef]
  15. B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).
  16. G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
    [CrossRef]
  17. D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
    [CrossRef]
  18. L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
    [CrossRef]
  19. T. Leblanc, Jet Propulsion Laboratory-Table Mountain Facility, POB 367, 24490 Table Mountain Road, Wrightwood, Calif. 92397, USA, is preparing a manuscript to be called “Measurements of humidity in the atmosphere and validation experiments (MOHAVE and MOHAVE-II).”
  20. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

2007 (1)

H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
[CrossRef]

2006 (1)

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

2004 (1)

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

2002 (1)

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

1999 (3)

1998 (2)

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979-4990 (1998).
[CrossRef]

V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
[CrossRef]

1995 (2)

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995).
[CrossRef]

1992 (1)

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

1991 (1)

M. J. Kurylo, “Network for the detection of stratospheric change,” Proc. SPIE 1491, 168-174 (1991).
[CrossRef]

1988 (1)

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

Ansmann, A.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Anthes, R. A.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Antikainen, V.

A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.

Aspey, R.

T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published).
[CrossRef]

Astakhov, V.

V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
[CrossRef]

Baldasano, J. M.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Balis, D.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Bevilacqua, R. M.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Bevis, B. G.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Bisson, S. E.

Blair, F. H.

Böckmann, C.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Bösenberg, J.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Brasseur, L. A. Heilman

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

Bussinger, S.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Cadirola, M.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Calpini, B.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Chaikovsky, A.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Comer, DIFA J.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

David, D.

H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
[CrossRef]

Demoz, B.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Di Girolamo, P.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Evans, K.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Feltz, W. F.

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

Ferrare, R. A.

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

Flamant, P.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Forster, P. M.

P. M. Forster and K. P. Shine, “Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling,” Geophys. Res. Lett. 26, 3309-3312 (1999).
[CrossRef]

Garnier, A.

Gentry, B.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Goldsmith, J. E. M.

Gomez, R. M.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Hågård, A.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Hauchecorne, A.

Herring, T. A.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Hofmann, D. J.

S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995).
[CrossRef]

Jauhiainen, H.

A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.

Keckhut, P.

Kurylo, M. J.

M. J. Kurylo, “Network for the detection of stratospheric change,” Proc. SPIE 1491, 168-174 (1991).
[CrossRef]

Leblanc, T.

T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published).
[CrossRef]

T. Leblanc, Jet Propulsion Laboratory-Table Mountain Facility, POB 367, 24490 Table Mountain Road, Wrightwood, Calif. 92397, USA, is preparing a manuscript to be called “Measurements of humidity in the atmosphere and validation experiments (MOHAVE and MOHAVE-II).”

McDermid, I. S.

T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published).
[CrossRef]

Melfi, S. H.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Merkulov, S.

V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
[CrossRef]

Mielke, B.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Miloshevich, L. M.

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

Mitev, V.

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Nedoluha, G. E.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Oltmans, S. J.

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995).
[CrossRef]

Papayannis, A.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Paukkunen, A.

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.

Pauls, T. A.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Pelon, J.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Resendes, D.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Rocken, C.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Rush, K.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Schneider, J.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Schwemmer, G.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Sherlock, V.

Shine, K. P.

P. M. Forster and K. P. Shine, “Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling,” Geophys. Res. Lett. 26, 3309-3312 (1999).
[CrossRef]

Smith, K.

H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
[CrossRef]

Spinelli, N.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Thacker, D. L.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Thomas, L.

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

Tooman, T. P.

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

Trickl, T.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Turner, D. D.

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979-4990 (1998).
[CrossRef]

Van Hove., T.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Vaughan, G.

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Venable, D.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Veselovskii, I.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Visconti, G.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Vömel, H.

H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
[CrossRef]

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

Waltman, W. B.

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Wandlinger, U.

U. Wandlinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241-271.

Wang, Z.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Ware, R. H.

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

Waring, D. P.

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

Wiegner, M.

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Yushkov, V.

V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
[CrossRef]

Appl. Opt. (3)

Geophys. Res. Lett. (1)

P. M. Forster and K. P. Shine, “Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling,” Geophys. Res. Lett. 26, 3309-3312 (1999).
[CrossRef]

J. Atmos. Ocean. Technol. (4)

T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006).
[CrossRef]

D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002).
[CrossRef]

L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004).
[CrossRef]

J. Geophys. Res. (3)

H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007).
[CrossRef]

B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).

G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995).
[CrossRef]

Nature (1)

S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995).
[CrossRef]

Proc. SPIE (2)

M. J. Kurylo, “Network for the detection of stratospheric change,” Proc. SPIE 1491, 168-174 (1991).
[CrossRef]

V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988).
[CrossRef]

Other (5)

“Assessment of upper tropospheric and stratospheric water vapor,” in SPARC Report No 2, D. Kley, J. M. Russell, III, and C. Phillips, eds. (Stratospheric Processes and Their Role in Climate, 2000).

U. Wandlinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241-271.

A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.

T. Leblanc, Jet Propulsion Laboratory-Table Mountain Facility, POB 367, 24490 Table Mountain Road, Wrightwood, Calif. 92397, USA, is preparing a manuscript to be called “Measurements of humidity in the atmosphere and validation experiments (MOHAVE and MOHAVE-II).”

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical comparison of a water vapor profile measured simultaneously by the JPL Raman lidar at TMF ( 2 h average) and a Vaisala RS92 radiosonde launched from TMF.

Fig. 2
Fig. 2

(a) Time–altitude color contour of water vapor mixing ratio and (b) its corresponding departure (in %) from the nightly mean measured by lidar at TMF on 10 October 2007. The superimposed white solid lines (b) represent the same water vapor departure, but as measured by each of the four radiosondes launched that night. The dotted white lines represent the time–altitude position of the balloon and correspond to the zero-water vapor departure.

Fig. 3
Fig. 3

(a)–(d) Time series of the TMF lidar calibration constant obtained on 10–16 October 2007 by normalizing to the closest radiosonde measurement. The time scale of the horizontal axis is not linear. Each plot corresponds to a different normalization method. Red is for the lower range, blue is for the midrange, and green is for the upper range (see text for details). (e) Time series of the TMF lidar H 2 O / N 2 channel ratio obtained on 10–16 October 2007 using a calibrated lamp. The colors are identical to those of Figs. 3a, 3b, 3c, 3d (see text for details).

Fig. 4
Fig. 4

Instrumental setup of the JPL—Table Mountain water vapor Raman lidar receiver.

Fig. 5
Fig. 5

Schematic of the lidar receiver front end and lamp setup during a so-called “lamp run” (see text for details). The lower range telescopes do not see the direct light from the lamp but light scattered by the hatch and other parts of the lidar room.

Fig. 6
Fig. 6

Schematic of the proposed long-term water vapor Raman lidar calibration method.

Fig. 7
Fig. 7

(a) Same as Fig. 3a, but the calibration values are nightly averaged (seven nights total). (b) Same as Fig. 3e, but the channel ratios are nightly averaged (seven nights total). (c) Product of the calibration constant (a) by the channel ratio (b). This time series portrays the stability of the lamp ratio over time (see text for details).

Fig. 8
Fig. 8

Same as Fig. 3e [or 7b], but for all the lamp runs performed during the extended time period from 10 October 2007 to 31 August 2008. The time scale of the horizontal axis is not linear.

Tables (2)

Tables Icon

Table 1 Overall Statistics Associated with the Various Lidar Calibration Methods Using Simultaneous and Collocated Measurements by Vaisela RS92 Radiosondes (See Text for Details)

Tables Icon

Table 2 Overall Statistics Associated with the Lidar Receiver Calibration Runs Using the Lamp (See Text for Details)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

q i = P i T i = L P i P i ,
L = cst = L 1 = P 1 T 1 = P 1 P 0 / q 0 1 ,

Metrics