Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair

Not Accessible

Your library or personal account may give you access

Abstract

Near-field optical properties and surface plasmon effects in a silver-shell nanocylinder pair with five different dielectric holes (DHs) that interact with a transverse magnetic mode incident plane wave are simulated by use of the finite-element method, which includes the investigation of particle–particle interaction. The proposed structure exhibits a redshifted localized surface plasmon that can be tuned over an extended wavelength range by varying the dielectric constant in DHs and the thickness of the nanocylinder silver shell. The increase in the near-field intensity is attributed to a larger effective size of DH that is filled with a higher refractive medium.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Controlling surface plasmon of several pair arrays of silver-shell nanocylinders

Yuan-Fong Chau, Han-Hsuan Yeh, Chiung-Chou Liao, Hong-Fa Ho, Chi-Yu Liu, and Din Ping Tsai
Appl. Opt. 49(7) 1163-1169 (2010)

Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry

Jesly Jacob, Ajith R, and Vincent Mathew
Appl. Opt. 50(33) 6277-6282 (2011)

Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang
Appl. Opt. 49(5) 920-926 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.