Abstract

Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
    [CrossRef]
  2. W. K. Vanhoolst and P. Van Espen, “Image processing in Secondary Ion Mass Spectroscopy,” Mikrochim. Acta 104, 415-425 (1991).
    [CrossRef]
  3. A. L. Broadfoot and B. R. Sandel, “Application of the intensified CCD to airglow and auroral measurements,” Appl. Opt. 31, 3097-3108 (1992).
    [CrossRef] [PubMed]
  4. G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
    [CrossRef]
  5. Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: high dynamic range in a wide field of view,” Int. J. Comput. Vis. 53, 245-267 (2003).
    [CrossRef]
  6. W. Steinchen and L. Yang, Digital Shearography (SPIE, 2001).
  7. Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rasstogi, ed. (Wiley, 2001).
  8. A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024-1030 (1990).
    [CrossRef]
  9. J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349-354 (1971).
  10. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).
  11. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, Digital Fringe Measurement Methods, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993).
  12. J.-R. Lee, “Spatial resolution and resolution in phase-shifting interferometry,” Meas. Sci. Technol. 16, 2525-2533 (2005).
    [CrossRef]
  13. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (J. Wiley, 1998).
  14. R. M. Groves, G. Pedrini, and W. Osten, “Extended dynamic range imaging in shearography,” Proc. SPIE 7000, 700010 (2008).
    [CrossRef]
  15. T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
    [CrossRef] [PubMed]
  16. K.-S. Chuang and H. K. Huang, “Assessment of noise in a digital image using the joint-count statistic and the Moran test,” Phys. Med. Biol. 37, 357-369 (1992).
    [CrossRef] [PubMed]
  17. A. D. Cliff and J. K. Ord, Spatial Process: Models and Applications (Pion, 1986).

2005 (1)

J.-R. Lee, “Spatial resolution and resolution in phase-shifting interferometry,” Meas. Sci. Technol. 16, 2525-2533 (2005).
[CrossRef]

2003 (2)

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: high dynamic range in a wide field of view,” Int. J. Comput. Vis. 53, 245-267 (2003).
[CrossRef]

1997 (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
[CrossRef]

1992 (2)

A. L. Broadfoot and B. R. Sandel, “Application of the intensified CCD to airglow and auroral measurements,” Appl. Opt. 31, 3097-3108 (1992).
[CrossRef] [PubMed]

K.-S. Chuang and H. K. Huang, “Assessment of noise in a digital image using the joint-count statistic and the Moran test,” Phys. Med. Biol. 37, 357-369 (1992).
[CrossRef] [PubMed]

1991 (1)

W. K. Vanhoolst and P. Van Espen, “Image processing in Secondary Ion Mass Spectroscopy,” Mikrochim. Acta 104, 415-425 (1991).
[CrossRef]

1990 (2)

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024-1030 (1990).
[CrossRef]

1971 (1)

J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349-354 (1971).

Adams, F.

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

Broadfoot, A. L.

Butters, J. N.

J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349-354 (1971).

Chen, S. C.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Chen, T.-J.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Chuang, K.-S.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

K.-S. Chuang and H. K. Huang, “Assessment of noise in a digital image using the joint-count statistic and the Moran test,” Phys. Med. Biol. 37, 357-369 (1992).
[CrossRef] [PubMed]

Cliff, A. D.

A. D. Cliff and J. K. Ord, Spatial Process: Models and Applications (Pion, 1986).

Creath, K.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, Digital Fringe Measurement Methods, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993).

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (J. Wiley, 1998).

Groves, R. M.

R. M. Groves, G. Pedrini, and W. Osten, “Extended dynamic range imaging in shearography,” Proc. SPIE 7000, 700010 (2008).
[CrossRef]

Huang, H. K.

K.-S. Chuang and H. K. Huang, “Assessment of noise in a digital image using the joint-count statistic and the Moran test,” Phys. Med. Biol. 37, 357-369 (1992).
[CrossRef] [PubMed]

Hwang, I.-M.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Jan, M.-L.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

Larson, G. W.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
[CrossRef]

Lee, J.-R.

J.-R. Lee, “Spatial resolution and resolution in phase-shifting interferometry,” Meas. Sci. Technol. 16, 2525-2533 (2005).
[CrossRef]

Leendertz, J. A.

J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349-354 (1971).

Michiels, F.

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

Moore, A. J.

A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024-1030 (1990).
[CrossRef]

Nayar, S. K.

Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: high dynamic range in a wide field of view,” Int. J. Comput. Vis. 53, 245-267 (2003).
[CrossRef]

Ord, J. K.

A. D. Cliff and J. K. Ord, Spatial Process: Models and Applications (Pion, 1986).

Osten, W.

R. M. Groves, G. Pedrini, and W. Osten, “Extended dynamic range imaging in shearography,” Proc. SPIE 7000, 700010 (2008).
[CrossRef]

Pedrini, G.

R. M. Groves, G. Pedrini, and W. Osten, “Extended dynamic range imaging in shearography,” Proc. SPIE 7000, 700010 (2008).
[CrossRef]

Piatko, C.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
[CrossRef]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (J. Wiley, 1998).

Rushmeier, H.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
[CrossRef]

Sandel, B. R.

Schechner, Y. Y.

Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: high dynamic range in a wide field of view,” Int. J. Comput. Vis. 53, 245-267 (2003).
[CrossRef]

Steinchen, W.

W. Steinchen and L. Yang, Digital Shearography (SPIE, 2001).

Tyrer, J. R.

A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024-1030 (1990).
[CrossRef]

Van Espen, P.

W. K. Vanhoolst and P. Van Espen, “Image processing in Secondary Ion Mass Spectroscopy,” Mikrochim. Acta 104, 415-425 (1991).
[CrossRef]

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

Vanhoolst, W.

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

Vanhoolst, W. K.

W. K. Vanhoolst and P. Van Espen, “Image processing in Secondary Ion Mass Spectroscopy,” Mikrochim. Acta 104, 415-425 (1991).
[CrossRef]

Wu, J.

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

Yang, L.

W. Steinchen and L. Yang, Digital Shearography (SPIE, 2001).

Appl. Opt. (1)

IEEE Trans. Vis. Comput. Graph. (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291-306 (1997).
[CrossRef]

Int. J. Comput. Vis. (1)

Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: high dynamic range in a wide field of view,” Int. J. Comput. Vis. 53, 245-267 (2003).
[CrossRef]

J. Am. Soc. Mass. Spectrom. (1)

F. Michiels, W. Vanhoolst, P. Van Espen, and F. Adams, “Acquisition and quantification of ion images with a camera-based detection system and classical quantification algorithms,” J. Am. Soc. Mass. Spectrom. 1, 37-52 (1990).
[CrossRef]

J. Meas. Control (1)

J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349-354 (1971).

Meas. Sci. Technol. (2)

J.-R. Lee, “Spatial resolution and resolution in phase-shifting interferometry,” Meas. Sci. Technol. 16, 2525-2533 (2005).
[CrossRef]

A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024-1030 (1990).
[CrossRef]

Mikrochim. Acta (1)

W. K. Vanhoolst and P. Van Espen, “Image processing in Secondary Ion Mass Spectroscopy,” Mikrochim. Acta 104, 415-425 (1991).
[CrossRef]

Phys. Med. Biol. (2)

T.-J. Chen, K.-S. Chuang, J. Wu, S. C. Chen, I.-M. Hwang, and M.-L. Jan, “A novel image quality index using Moran I Statistics,” Phys. Med. Biol. 48, N131-1N137 (2003).
[CrossRef] [PubMed]

K.-S. Chuang and H. K. Huang, “Assessment of noise in a digital image using the joint-count statistic and the Moran test,” Phys. Med. Biol. 37, 357-369 (1992).
[CrossRef] [PubMed]

Other (7)

A. D. Cliff and J. K. Ord, Spatial Process: Models and Applications (Pion, 1986).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (J. Wiley, 1998).

R. M. Groves, G. Pedrini, and W. Osten, “Extended dynamic range imaging in shearography,” Proc. SPIE 7000, 700010 (2008).
[CrossRef]

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, Digital Fringe Measurement Methods, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993).

W. Steinchen and L. Yang, Digital Shearography (SPIE, 2001).

Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rasstogi, ed. (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a), (c), and (e) are images recorded using integration times of 20.48 ms , 640 μs , and 20 μs , respectively. (b), (d), and (f) are corresponding image masks with saturating pixels set to zero (black). (g) is the EDR image obtained by merging (a), (c), and (e), displayed on a log scale.

Fig. 2
Fig. 2

Typical shearography experimental layout. The illumination beam is expanded by a lens to illuminate the surface of the object. Scattered light is optically mixed in the interferometer comprising beam splitter BS, phase-shifting mirror M P , and shearing mirror M S , and is imaged onto camera chip CCD by a lens.

Fig. 3
Fig. 3

(a) is the interferometer head composed of shearing Michelson interferometer, lens, and camera. (b) is the prototype shearography sensor. Illumination of the object is by a Verdi-V10 laser. The other components shown are the sensor head mounted on a tripod, the white electronics control box, and a PC. (c) is the user interface for the software showing from left to right live display, wrapped phase map, and unwrapped phase map.

Fig. 4
Fig. 4

(a) is a white light image of the sample wooden panel painting under test. The lower darker part of the image has a low signal level. (b) and (c) are wrapped and unwrapped phase maps, respectively, calculated from interferograms recorded with a fixed camera integration time. (d) is an interferogram recorded using the EDR technique. In (d) almost all pixels are in an optimum intensity range for the phase calculation; however the image is not a true intensity image of the object. (e) and (f) are wrapped and unwrapped phase maps calculated from interferograms recorded with the EDR technique.

Tables (1)

Tables Icon

Table 1 Average Reduction in Image Noise Achieved by the EDR Imaging Technique a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 4 π λ δ w δ x d x , or Δ ϕ = 4 π λ δ w δ y d y ,
tan ϕ = 3 ( I C I A ) ( 2 I B I C I A ) ,

Metrics