Abstract

Ray-optic analysis of transmission spectra and the leakage loss of ring-cladding hollow waveguides suggests that such waveguides offer an attractive platform for the creation of compact and efficient biochemical sensors and sensor arrays. The ring cladding in such waveguides serves as a built-in Fabry–Perot interferometer, allowing the detection of few-nanometer-thick molecular layers and ensuring a high sensitivity of transmission spectra of waveguide modes to small changes in the refractive index of an analyte filling the hollow core and air holes in the waveguide cladding.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibres," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  4. F. S. Ligler and C. A. Rowe-Taitt, eds., Optical Biosensors: Present and Future (Elsevier, 2002).
  5. O. Parriaux and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors," J. Lightwave Technol. 16, 573-582 (1998).
    [CrossRef]
  6. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, "Sensitivity enhancement of integrated optical sensors by use of thin high-index films," Appl. Opt. 38, 6036-6039 (1999).
    [CrossRef]
  7. F. Prieto, A. Lobera, D. Jiménez, C. Domínguez, A. Calle, and L. M. Lechuga, "Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensors," J. Lightwave Technol. 18, 966-972 (2000).
    [CrossRef]
  8. F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, and C. Dominguez, "Optimized silicon antiresonant reflecting optical waveguides for sensing applications," J. Lightwave Technol. 19, 75-83 (2001).
    [CrossRef]
  9. M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  10. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
    [CrossRef]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  12. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  13. S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  14. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
    [CrossRef] [PubMed]
  15. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  16. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  17. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
    [CrossRef]
  18. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  19. G. Pickrell, W. Peng, and A. Wang, "Random-hole optical fiber evanescent-wave gas sensing," Opt. Lett. 29, 1476-1478 (2004).
    [CrossRef] [PubMed]
  20. R. C. Alfernes, Guided Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988), Chap. 4.
  21. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, "Enhanced two-photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003).
    [CrossRef] [PubMed]
  22. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  23. N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
    [CrossRef]
  24. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  25. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, "Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber," Phys. Rev. A 70, 045802 (2004).
    [CrossRef]
  26. A. Yariv and P. Yeh, Optical Waves in Crystals New York (Wiley, 1984).
  27. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).
  28. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  29. N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  30. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef] [PubMed]
  31. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  32. M. Miyagi and S. Nishida, "A proposal of low-loss leaky waveguide for submillimeter waves transmission," IEEE Trans. Microwave Theory Tech. 28, 398-401 (1980).
    [CrossRef]
  33. M. Miyagi and S. Nishida, "Transmission characteristics of dielectric tube leaky waveguide," IEEE Trans. Microwave Theory Tech. 28, 536-541 (1980).
    [CrossRef]
  34. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  35. G. Gaulitz, "Multiple reflectance interference spectroscopy measurements made in parallel for binding studies," Rev. Sci. Instrum. 76, 06224 (2005).

2006 (3)

2005 (5)

2004 (5)

2003 (5)

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

2001 (3)

2000 (1)

1999 (2)

G. R. Quigley, R. D. Harris, and J. S. Wilkinson, "Sensitivity enhancement of integrated optical sensors by use of thin high-index films," Appl. Opt. 38, 6036-6039 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

1998 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

1980 (2)

M. Miyagi and S. Nishida, "A proposal of low-loss leaky waveguide for submillimeter waves transmission," IEEE Trans. Microwave Theory Tech. 28, 398-401 (1980).
[CrossRef]

M. Miyagi and S. Nishida, "Transmission characteristics of dielectric tube leaky waveguide," IEEE Trans. Microwave Theory Tech. 28, 536-541 (1980).
[CrossRef]

1964 (1)

E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Appl. Opt. (2)

Appl. Phys. B (1)

N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

M. Miyagi and S. Nishida, "A proposal of low-loss leaky waveguide for submillimeter waves transmission," IEEE Trans. Microwave Theory Tech. 28, 398-401 (1980).
[CrossRef]

M. Miyagi and S. Nishida, "Transmission characteristics of dielectric tube leaky waveguide," IEEE Trans. Microwave Theory Tech. 28, 536-541 (1980).
[CrossRef]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Nature (1)

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Opt. Express (9)

S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, "Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber," Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Gaulitz, "Multiple reflectance interference spectroscopy measurements made in parallel for binding studies," Rev. Sci. Instrum. 76, 06224 (2005).

Science (1)

P. St. J. Russell, "Photonic crystal fibres," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (4)

F. S. Ligler and C. A. Rowe-Taitt, eds., Optical Biosensors: Present and Future (Elsevier, 2002).

A. Yariv and P. Yeh, Optical Waves in Crystals New York (Wiley, 1984).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).

R. C. Alfernes, Guided Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Planar and (b) cylindrical, ring-cladding hollow-waveguide structures.

Fig. 2
Fig. 2

(Color online) Ray-optic representation of guiding in a hollow waveguide: n 1 and n 2 are the refractive indices of the core and the cladding, respectively; θ 1 and θ 2 are the angles that the incident and refracted rays make with the normal to the core–cladding interface, t is the transverse size of the cladding, β = ( k 0 n 1 2 h 2 ) 1 / 2 is the propagation constant of the waveguide mode, k 0 = 2 π / λ , λ is the radiation wavelength, and h is the eigenvalue of the waveguide mode.

Fig. 3
Fig. 3

(Color online) Transmission spectra of a planar (solid curve) and a cylindrical, ring-cladding (dashed–dotted curve) hollow waveguide calculated using Eqs. (1) and (5)–(8) for the fundamental mode ( m = 1 ) with n 1 = 1 , t = 10 μ m , d = 0.5 μ m , and L = 2   cm . The dispersion of the cladding was included in these calculations by using the Sellmeier equation for fused silica. The envelope of the transmission spectrum calculated by using Eq. (17) is shown by the dashed curve.

Fig. 4
Fig. 4

(Color online) Transmission spectra of a ring-cladding hollow waveguide filled with an analyte with a refractive index n 1 = 1.33 without (1,2) and with (3,4) a 10   nm thick layer of biomolecules on both sides of the cladding. The ring-cladding thickness is d = 400   nm , the refractive index of the cladding is n 2 = 1.46 . The transverse size of the core is t = 15 μ m (1,3) and 100 μ m (2,4).

Fig. 5
Fig. 5

(Color online) Transmission spectra of a ring-cladding hollow waveguide filled with an analyte with a refractive index n 1 = 1.33 (solid curve) and n 1 = 1.34 (dashed curve). The ring-cladding thickness is d = 400   nm , the refractive index of the cladding is n 2 = 1.46 . The transverse size of the core is t = 100 μ m .

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

exp ( α m L ) = r N ,
N = L tan   θ 1
tan   θ 1 = β m h m .
h m = π m t ,
N λ m 2 t 2 n 1 ,
r = | C A | 2 ,
A = [ cos ( k 2 d ) + i 2 ( k 2 k 1 + k 1 k 2 ) sin ( k 2 d ) ] ,
C = 1 2 ( k 1 k 2 k 2 k 1 ) sin ( k 2 d ) ,
r r F P = F sin 2 ( δ 2 ) 1 + F sin 2 ( δ 2 ) ,
δ = 4 π λ d n 2 { 1 ( n 1 n 2 ) 2 [ 1 ( h β ) 2 ] } 1 / 2 ,
F = 4 r F ( 1 r F ) 2 ,
r F = [ n 1   cos   θ 1 n 2   cos   θ 2 n 1   cos   θ 1 + n 2   cos   θ 2 ] 2
r F 1 4 n 1   cos   θ 1 n 2   cos   θ 2 1 2 ( n 2 2 n 1 2 ) 1 / 2 λ m t ,
δ 4 π λ d ( n 2 2 n 1 2 ) 1 / 2 ,
F m 2 t 2 λ 2 ( n 2 2 n 1 2 ) .
λ l = 2 d l ( n 2 2 n 1 2 ) 1 / 2 ,
λ j = 4 d 2 j + 1 ( n 2 2 n 1 2 ) 1 / 2 ,
α m a r 1 2 ( n c l 2 n 1 2 ) ( λ m ) 3 t 4 n 1 .

Metrics