Abstract

A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2  μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, "Three dimensional OCT images from retina and skin," Opt. Express 7, 292-298 (2000).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Germert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
    [CrossRef] [PubMed]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  5. G. Hausler and M. W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef] [PubMed]
  6. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, A. Kowalczyk, J. S. Duker, and J. G. Fujimoto, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  7. B. Laude, A. D. Martino, B. Drévillon, L. Benattar, and L. Schwartz, "Full-field optical coherence tomography with thermal light," Appl. Opt. 41, 6637-6645 (2002).
    [CrossRef] [PubMed]
  8. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberlé, C. Rullière, P. E. Minot, M. Lasségues, and J. E. S. Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. 41, 2059-2064 (2002).
    [CrossRef] [PubMed]
  9. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  10. L. Yu and M. K. Kim, "Full-color three-dimensional microscopy by wide-field optical coherence tomography," Opt. Express 12, 6632-6641 (2004).
    [CrossRef] [PubMed]
  11. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005).
    [CrossRef] [PubMed]
  12. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
    [CrossRef] [PubMed]
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef] [PubMed]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  15. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006).
    [CrossRef] [PubMed]
  16. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccaram, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, 1227-1234 (2004).
    [CrossRef] [PubMed]
  17. S. Chang, X. Liu, X. Cai, and C. P. Groverm, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
    [CrossRef] [PubMed]
  18. M. Akiba, K. P. Chan, and N. Tanno, "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras," Opt. Lett. 28, 816-818 (2003).
    [CrossRef] [PubMed]
  19. G. Moneron, A. C. Boccara, and A. Dubois, "Stroboscopic ultrahigh-resolution full-field optical coherence tomography," Opt. Lett. 30, 1351-1353 (2005).
    [CrossRef] [PubMed]
  20. K. Grieve, G. Moneron, A. Dubois, J. F. L. Gargasson, and C. Boccara, "Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography," J. Opt. A: Pure Appl. Opt. 7, 368-373 (2005).
    [CrossRef] [PubMed]
  21. A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.21 µm wavelength region," Opt. Commun. 266, 738-743 (2006).
    [CrossRef] [PubMed]
  22. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, "Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues," Opt. Commun. 271, 573-580 (2007).
    [CrossRef] [PubMed]
  23. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 2000).
    [PubMed]

2007 (1)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, "Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues," Opt. Commun. 271, 573-580 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (4)

S. Chang, X. Liu, X. Cai, and C. P. Groverm, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef] [PubMed]

K. Grieve, G. Moneron, A. Dubois, J. F. L. Gargasson, and C. Boccara, "Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography," J. Opt. A: Pure Appl. Opt. 7, 368-373 (2005).
[CrossRef] [PubMed]

G. Moneron, A. C. Boccara, and A. Dubois, "Stroboscopic ultrahigh-resolution full-field optical coherence tomography," Opt. Lett. 30, 1351-1353 (2005).
[CrossRef] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

2002 (3)

2000 (1)

1998 (2)

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
[CrossRef] [PubMed]

G. Hausler and M. W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef] [PubMed]

1997 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Appl. Opt. (4)

J. Biomed. Opt. (1)

G. Hausler and M. W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

K. Grieve, G. Moneron, A. Dubois, J. F. L. Gargasson, and C. Boccara, "Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography," J. Opt. A: Pure Appl. Opt. 7, 368-373 (2005).
[CrossRef] [PubMed]

Opt. Commun. (3)

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.21 µm wavelength region," Opt. Commun. 266, 738-743 (2006).
[CrossRef] [PubMed]

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, "Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues," Opt. Commun. 271, 573-580 (2007).
[CrossRef] [PubMed]

S. Chang, X. Liu, X. Cai, and C. P. Groverm, "Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving," Opt. Commun. 246, 579-585 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccaram, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 2000).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup; BBS, broadband beam splitter; NDF, neutral density filter; MO, microscope objective lens (water-immersion, 10 × , 0.3 NA); L1, L2, lenses; PZT, piezoelectric transducer actuator; CCD, charge-coupled device ( 640 × 480 pixels, 10 bits).

Fig. 2
Fig. 2

Signal contrast of the proposed system measured in term of the applied phase shift α. The solid line is the theoretical result. The signal has its maximum when the phase shift is 180°, and degrades with the error in the phase. Even with a phase error of 50°, the signal contrast is reduced by only 10% from its maximum. The measurements (data points) were made for every phase shift of 22.5° from 0 to 180°.

Fig. 3
Fig. 3

(a) Optical spectrum of a thermal light source measured with a line-CCD based high-resolution spectrometer, and (b) corresponding point spread function of the OCT system. The spectrum was centered at 0.6   μm and had a 164   nm FWHM. The measured point spread function had an 1   μm FWHM in air. A total of 80 measurements were performed.

Fig. 4
Fig. 4

En-face OCT image of a U.S. Air Force 1951 resolution test pattern taken with the implemented FF-OCT system. The illuminated area was 433 μ m × 325 μ m ( 640 × 480 pixels). The transverse resolution of the system was measured as 2.2   μm .

Fig. 5
Fig. 5

Sensitivity of the implemented FF-OCT system. A glass plate (GP) having 2% reflectivity on its top surface was used as a sample for evaluating the sensitivity. While moving the GP along the sample arm, the FF-OCT signal was measured. The average of 200 measurements was taken to increase the sensitivity. The detection sensitivity and the dynamic range of the system were 83 and 70   dB , respectively.

Fig. 6
Fig. 6

OCT images of epidermal cells of a garlic. The microscopic images [left column; (a)–(c)] and the retrieved en-face images [right column; (b)–(d)] of the sample. The images were taken at two different depth positions; at the top surface [upper row; (a) and (b)] and at a plane 40   μm below the top surface [lower row; (c) and (d)]. The image size of each figure is 512   μm × 452   μm .

Fig. 7
Fig. 7

Volumetric OCT image of a gold beetle reconstructed with 570 en-face OCT images. Three different layers, the hard forewing, the flight wing, and the abdomen, can be clearly observed in the reconstructed three-dimensional image.

Fig. 8
Fig. 8

(a) Different view of Fig. 7 presenting the image slicing direction, (b) x-y image ( 433   μm × 325   μm size), (c) x-z image ( 433   μm × 150   μm size), and (d) y-z image ( 325   μm × 150   μm size).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I 0 ( x , y ) = I R + I S + A ( x , y ) [ cos ϕ ( x , y ) ] .
I α ( x , y ) = I R + I S + A ( x , y ) [ cos ( ϕ ( x , y ) α ) ] .
S 1 = 2 A ( x , y ) sin ( α 2 ) sin [ ϕ ( x , y ) α 2 ] .
S 1 = A ( x , y ) [ sin Φ ( x , y ) ] ,
A ( x , y ) 2 A ( x , y ) sin ( α 2 ) ,
Φ ϕ ( x , y ) ( α 2 ) .
S 2 = H { S 1 } = A ( x , y ) [ cos Φ ( x , y ) ] .
A ( x , y ) = S 1 2 + S 2 2 .
Δ z = 2  ln   2 π ( λ c 2 Δ λ )
R min = ( R ref + R inc ) 2 2 N ζ sat R ref ,

Metrics