Abstract

We experimentally demonstrate a stable ultrafast first-order temporal differentiator using a fiber-optic Michelson interferometer incorporating a simple feedback stabilization control, which is based on dithering a single wavelength cw reference. Feedback control signals are acquired by a phase-lock-loop and used for automatically adjusting and maintaining the resonance wavelength of the differentiator at the pulse center wavelength without dithering or disturbing the interferometer arms. Picosecond odd-symmetry Hermite–Gaussian waveforms using the implemented first-order differentiator have been stably generated. The demonstrated stabilization system should prove useful for a wide range of ultrafast pulse processing and analysis applications based on the use of two-arm interferometers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Park, J. Azaña, and R. Slavík, "Ultrafast all-optical first and higher-order differentiators based on interferometers," Opt. Lett. 32, 710-712 (2007).
    [CrossRef] [PubMed]
  2. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on temporal coherence synthesization," Opt. Express 15, 9584-9599 (2007).
    [CrossRef] [PubMed]
  3. Y. C. Chung and R. M. Derosier, "Frequency-locking of 1.5-μm InGaAsP lasers to an atomic krypton line without dithering the laser frequency," IEEE Photon. Technol. Lett. 2, 435-437 (1990).
    [CrossRef]
  4. S. Olivier, L. Delage, F. Reynaud, V. Collomb, and D. Persegol, "First test on an integrated optics potential for optical path stabilization in a stellar interferometer," J. Opt. A , Pure Appl. Opt. 7, 660-662 (2005).
    [CrossRef]
  5. T. Yoshino, M. Nara, S. Mnatzakanian, B. S. Lee, and T. C. Strand, "Laser diode feedback interferometer for stabilization and displacement measurements," Appl. Opt. 26, 892-897 (1987).
    [CrossRef] [PubMed]
  6. R. Onodera and Y. Ishii, "Phase-shift-locked interferometer with a wavelength-modulated laser diode," Appl. Opt. 42, 91-96 (2003).
    [CrossRef] [PubMed]
  7. O. Sasaki, N. Murata, and T. Suzuki, "Sinusoidal wavelength-scanning interferometer with a superluminescent diode for step-profile measurement," Appl. Opt. 39, 4589-4592 (2000).
    [CrossRef]
  8. Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, "Simple scanning fiber-optic confocal microscopy for the refractive index profile measurement of an optical fiber," Meas. Sci. Technol. 13, 695-699 (2002).
    [CrossRef]
  9. M. Kulishov and J. Azaña, "Long-period fiber gratings as ultrafast optical differentiators," Opt. Lett. 30, 2700-2702 (2005).
    [CrossRef] [PubMed]
  10. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-derivative optical differentiators," Opt. Commun. 230, 115-129 (2004).
    [CrossRef]
  11. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, "Ultrafast all-optical differentiators," Opt. Express 14, 10699-10707 (2006).
    [CrossRef] [PubMed]
  12. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express 15, 371-381 (2007).
    [CrossRef] [PubMed]
  13. Y. Park, F. Li, and J. Azaña, "Characterization and optimization of optical pulse differentiation using spectral interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).
    [CrossRef]
  14. B. Xia and L. R. Chen, "A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping," IEEE J. Sel. Top. Quantum Electron. 11, 165-172 (2005).
    [CrossRef]
  15. C. Dorrer and I. Kang, "Highly sensitive direct characterization of femtosecond pulses by electro-optic spectral shearing interferometry," Opt. Lett. 28, 477-479 (2003).
    [CrossRef] [PubMed]

2007 (3)

2006 (2)

R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, "Ultrafast all-optical differentiators," Opt. Express 14, 10699-10707 (2006).
[CrossRef] [PubMed]

Y. Park, F. Li, and J. Azaña, "Characterization and optimization of optical pulse differentiation using spectral interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).
[CrossRef]

2005 (3)

B. Xia and L. R. Chen, "A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping," IEEE J. Sel. Top. Quantum Electron. 11, 165-172 (2005).
[CrossRef]

S. Olivier, L. Delage, F. Reynaud, V. Collomb, and D. Persegol, "First test on an integrated optics potential for optical path stabilization in a stellar interferometer," J. Opt. A , Pure Appl. Opt. 7, 660-662 (2005).
[CrossRef]

M. Kulishov and J. Azaña, "Long-period fiber gratings as ultrafast optical differentiators," Opt. Lett. 30, 2700-2702 (2005).
[CrossRef] [PubMed]

2004 (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-derivative optical differentiators," Opt. Commun. 230, 115-129 (2004).
[CrossRef]

2003 (2)

2002 (1)

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, "Simple scanning fiber-optic confocal microscopy for the refractive index profile measurement of an optical fiber," Meas. Sci. Technol. 13, 695-699 (2002).
[CrossRef]

2000 (1)

1990 (1)

Y. C. Chung and R. M. Derosier, "Frequency-locking of 1.5-μm InGaAsP lasers to an atomic krypton line without dithering the laser frequency," IEEE Photon. Technol. Lett. 2, 435-437 (1990).
[CrossRef]

1987 (1)

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

B. Xia and L. R. Chen, "A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping," IEEE J. Sel. Top. Quantum Electron. 11, 165-172 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Park, F. Li, and J. Azaña, "Characterization and optimization of optical pulse differentiation using spectral interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).
[CrossRef]

Y. C. Chung and R. M. Derosier, "Frequency-locking of 1.5-μm InGaAsP lasers to an atomic krypton line without dithering the laser frequency," IEEE Photon. Technol. Lett. 2, 435-437 (1990).
[CrossRef]

J. Opt. A (1)

S. Olivier, L. Delage, F. Reynaud, V. Collomb, and D. Persegol, "First test on an integrated optics potential for optical path stabilization in a stellar interferometer," J. Opt. A , Pure Appl. Opt. 7, 660-662 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, "Simple scanning fiber-optic confocal microscopy for the refractive index profile measurement of an optical fiber," Meas. Sci. Technol. 13, 695-699 (2002).
[CrossRef]

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-derivative optical differentiators," Opt. Commun. 230, 115-129 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of dithering feedback control in a two-arm interferometer. Plots (a) and (b) show the monitoring output signal when the interferometer spectral transmission is shifted to a shorter or a longer wavelength relative to the reference wavelength, respectively. Plot (c) shows the in-phase monitoring output signal.

Fig. 2
Fig. 2

Schematic of the first-order differentiation experiment incorporating the dithering feedback control. OSA: optical spectrum analyzer; FTSI: Fourier transform spectral interferometry; FBG: fiber Bragg grating; ISO: isolator; PC: polarization controller; M: mirror; BPF: bandpass filter; PD: photodiode; DAQ: data acquisition board; PZT: piezoelectric transducer.

Fig. 3
Fig. 3

Comparison of the unlocked and the locked results in terms of the output pulse spectra (a) and (b), respectively, and the output monitoring signal (c).

Fig. 4
Fig. 4

Reconstructed output OS–HG waveforms from ten different FTSI measurements captured with an 1   min time interval. (a) Temporal intensity profiles, and (b) corresponding retrieved phase profiles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ z ( 1 λ r 1 λ 0 ) = m   or   ( m + 1 / 2 ) ,
I ( t ) ( λ λ m ) 2 = ( δ λ 2 + Δ λ 2 2 ) + Δ λ 2 2   cos ( 2 Ω t ) + 2 δ λ · Δ λ   cos ( Ω t ) .

Metrics