Abstract

Deconvolution of optically collected axisymmetric flame data is equivalent to solving an ill-posed problem subject to severe error amplification. Tikhonov regularization has recently been shown to be well suited for stabilizing this deconvolution, although the success of this method hinges on choosing a suitable regularization parameter. Incorporating a parameter selection scheme transforms this technique into a reliable automatic algorithm that outperforms unregularized deconvolution of a smoothed data set, which is currently the most popular way to analyze axisymmetric data. We review the discrepancy principle, L-curve curvature, and generalized cross-validation parameter selection schemes and conclude that the L-curve curvature algorithm is best suited to this problem.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deconvolution of axisymmetric flame properties using Tikhonov regularization

Kyle J. Daun, Kevin A. Thomson, Fengshan Liu, and Greg J. Smallwood
Appl. Opt. 45(19) 4638-4646 (2006)

Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies

Judit Chamorro-Servent, Juan Aguirre, Jorge Ripoll, Juan José Vaquero, and Manuel Desco
Opt. Express 19(12) 11490-11506 (2011)

Signal restoration combining Tikhonov regularization and multilevel method with thresholding strategy

Liang-Jian Deng, Ting-Zhu Huang, Xi-Le Zhao, Liang Zhao, and Si Wang
J. Opt. Soc. Am. A 30(5) 948-955 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription