Abstract

We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200  μm to 1000   μm. Phantom measurements show that the path length is nearly constant for scattering coefficients in the range 5mm1<μs<50mm1 for all fiber diameters and that the path length is proportional to the fiber diameter. The path length decreases with increasing absorption for all fiber diameters, and this effect is more pronounced for larger fiber diameters. An empirical model is formulated that relates the DPS path length to total absorption for all fiber diameters simultaneously.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, "Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties," Appl. Opt. 36, 5655-5661 (1997).
    [CrossRef] [PubMed]
  2. A. Amelink and H. J. C. M. Sterenborg, "Measurement of the local optical properties of turbid media by differential path-length spectroscopy," Appl. Opt. 43, 3048-3054 (2004).
    [CrossRef] [PubMed]
  3. A. Amelink, O. P. Kaspers, H. J. C. M. Sterenborg, J. E. van der Wal, J. L. N. Roodenburg, and M. J. H. Witjes, "Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy," Oral Oncol. 44, 65-71 (2008).
    [CrossRef]
  4. C. S. Loh, A. J. MacRobert, J. Bedwell, J. Regula, N. Krasner, and S. G. Bown, "Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy," Br. J. Cancer 68, 41-51 (1993).
    [CrossRef] [PubMed]
  5. J. van den Boogert, R. van Hillegersberg, F. W. de Rooij, R. W. de Bruin, A. Edixhoven-Bosdijk, A. B. Houtsmuller, P. D. Siersema, J. H. Wilson, and H. W. Tilanus, "5-Aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration," J. Photochem. Photobiol. B 44, 29-38 (1998).
    [CrossRef] [PubMed]
  6. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, "Optical properties of intralipid--a phantom medium for light-propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  7. H. J. van Staveren, C. J. M. Moes, J. Vanmarle, S. A. Prahl, and M. J. C. Vangemert, "Light-scattering in Intralipid-10-percent in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  8. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef] [PubMed]
  9. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser Irradiated Tissue (Plenum, 1995), pp. 280-300.
  10. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).
    [CrossRef]
  11. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
    [CrossRef] [PubMed]
  12. J. Qu, C. MacAulay, S. Lam, and B. Palcic, "Optical properties of normal and carcinomatous bronchial tissue," Appl. Opt. 33, 7397-7405 (1994).
    [CrossRef] [PubMed]
  13. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separation," Opt. Lett. 21, 546-548 (1996).
    [CrossRef] [PubMed]

2008 (1)

A. Amelink, O. P. Kaspers, H. J. C. M. Sterenborg, J. E. van der Wal, J. L. N. Roodenburg, and M. J. H. Witjes, "Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy," Oral Oncol. 44, 65-71 (2008).
[CrossRef]

2004 (1)

2001 (1)

1999 (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

1998 (1)

J. van den Boogert, R. van Hillegersberg, F. W. de Rooij, R. W. de Bruin, A. Edixhoven-Bosdijk, A. B. Houtsmuller, P. D. Siersema, J. H. Wilson, and H. W. Tilanus, "5-Aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration," J. Photochem. Photobiol. B 44, 29-38 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

1994 (1)

1993 (1)

C. S. Loh, A. J. MacRobert, J. Bedwell, J. Regula, N. Krasner, and S. G. Bown, "Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy," Br. J. Cancer 68, 41-51 (1993).
[CrossRef] [PubMed]

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, "Optical properties of intralipid--a phantom medium for light-propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

1991 (1)

Appl. Opt. (6)

Br. J. Cancer (1)

C. S. Loh, A. J. MacRobert, J. Bedwell, J. Regula, N. Krasner, and S. G. Bown, "Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy," Br. J. Cancer 68, 41-51 (1993).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

J. van den Boogert, R. van Hillegersberg, F. W. de Rooij, R. W. de Bruin, A. Edixhoven-Bosdijk, A. B. Houtsmuller, P. D. Siersema, J. H. Wilson, and H. W. Tilanus, "5-Aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration," J. Photochem. Photobiol. B 44, 29-38 (1998).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, "Optical properties of intralipid--a phantom medium for light-propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Opt. Lett. (1)

Oral Oncol. (1)

A. Amelink, O. P. Kaspers, H. J. C. M. Sterenborg, J. E. van der Wal, J. L. N. Roodenburg, and M. J. H. Witjes, "Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy," Oral Oncol. 44, 65-71 (2008).
[CrossRef]

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Other (1)

A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser Irradiated Tissue (Plenum, 1995), pp. 280-300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Example spectra for a scattering coefficient of 15 mm 1 and absorption coefficients μ a = 0 m m 1 ( R 0 ) and μ a = 1.6 mm 1 ( R ) using 600 micron fibers. The error bars represent the standard error in the mean value of the smoothed data points.

Fig. 3
Fig. 3

(a) Extracted differential path length as a function of scattering coefficient for an absorption coefficient of μ a = 0.4 mm 1 , for DPS probes with 200   μm (open circles), 400   μm (closed circles), 600   μm (open triangles), 800   μm (closed squares), and 1000   μm (open squares) fibers. All error bars (standard error of the mean) lie within the figure points. (b) Differential path length∕fiber diameter ratios ( τ / d fiber ) for scattering coefficients of μ s = [ 5 , 50 ] mm 1 and an absorption coefficient of μ a = 0.4 mm 1 .

Fig. 4
Fig. 4

Differential path length as a function of absorption coefficient for a scattering coefficient of μ s = 15 mm 1 , for DPS probes with 200   μm (open circles), 400   μm (closed circles), 600   μm (open triangles), 800   μm (closed squares), and 1000   μm (open squares) fibers. All error bars (standard error of the mean) lie within the figure points.

Fig. 5
Fig. 5

Differential path length∕fiber diameter ratios ( τ / d fiber ) as a function of μ a d fiber for a scattering coefficient of μ s = 15 mm 1 for all DPS probes simultaneously. The horizontal dotted line represents τ / d fiber = constant , and the other dotted line represents τ / d fiber = constant ln ( μ a d fiber ) .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R = I J ,
R = R 0 exp ( τ μ a specific c ) ,
R = c cal [ ( I I water ) ( I white I b l a c k ) J ( J white J black ) ] ,
τ = ln ( R / R 0 ) μ a specific c .
τ model d fiber = c 1 empirical 1 + ln ( 1  +   c 2 empirical μ a d fiber ) .
R = R 0 exp ( 0.95 d fiber μ a specific c ) .

Metrics