Abstract

An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May–June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. A. Coakley, R. D. Cess, and F. B. Yurevich, "The effect of troposheric aerosols on the earth's radiation budget: a parameterization for climate models," J. Atmos. Sci. 40, 116-138 (1983).
    [CrossRef]
  2. J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
    [CrossRef] [PubMed]
  3. A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-142.
  4. D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, "Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar," J. Atmos. Ocean. Technol. 24, 1377-1388 (2007).
    [CrossRef]
  5. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation," Appl. Opt. 22, 3716-3724 (1983).
    [CrossRef] [PubMed]
  6. H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983).
    [CrossRef] [PubMed]
  7. R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar measurement of troposheric backscatter-ratio with barium atomic blocking filters," J. Atmos. Ocean. Technol. 7, 876-881 (1990).
    [CrossRef]
  8. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
    [CrossRef]
  9. P. Piironen and E. W. Eloranta, "Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter," Opt. Lett. 19, 234-236 (1994).
    [CrossRef] [PubMed]
  10. Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
    [CrossRef]
  11. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2000JD000202 (2002).
    [CrossRef]
  12. R. Ferrare, C. Hostetler, J. Hair, A. Cook, D. Harper, S. Burton, M. Clayton, A. Clarke, P. Russell, and J. Redemann, "Airborne high spectral resolution lidar aerosol measurements during MILAGRO and TEXAQS/GOMACCS," presented at the 87th Annual Meeting of the American Meteorological Society, San Antonio, Texas, 14-18 January 2007.
    [PubMed]
  13. A. Stoffelen, J. Pailleux, E. Källn, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
    [CrossRef]
  14. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, "Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations," Appl. Opt. 46, 6606-6622 (2007).
    [CrossRef] [PubMed]
  15. A. Petzold, B. Weinzierl, M. Esselborn, G. Ehret, M. Fiebig, A. Fix, C. Kiemle, K. Rasp, and M. Wirth, "Technical support of the EarthCARE Mission for the validation of spaceborne aerosol products during the Saharan Mineral Dust Experiment," European Space Research and Technology Centre (ESTEC) contract 19429/06/NL/AR (2007).
  16. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1975).
  17. R. Miles, W. Lempert, and J. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, 33-51 (2001).
    [CrossRef]
  18. A. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981).
    [CrossRef] [PubMed]
  19. C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001).
    [CrossRef]
  20. S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode. Atlas III (Edition du CNRS, 1978).
  21. G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).
  22. A. T. Young and G. W. Kattawar, "Rayleigh-scattering line profiles," Appl. Opt. 22, 3668-3670 (1983).
    [CrossRef] [PubMed]
  23. J. N. Forkey, Precision Optics Corporation, 22 East Broadway, Gardner, Massachusetts 01440 (personal communication, 2005).
  24. J. N. Forkey, W. R. Lempert, and R. B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG wavelengths," Appl. Opt. 36, 6729-6738 (1997).
    [CrossRef]
  25. G. W. Kattawar, A. T. Young, and T. J. Humphreys, "Inelastic scattering in planetary atmospheres. 1. The Ring effect, without aerosols," Astrophys. J. 243, 1049-1057 (1981).
    [CrossRef]
  26. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  27. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, "On Rayleigh optical depth calculations," J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
    [CrossRef]
  28. A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least square procedures," Anal. Chem. 36, 1627-1639 (1964).
    [CrossRef]
  29. J. Biele, G. Beyerle, and G. Baumgarten, "Polarization lidar: corrections of instrumental effects," Opt. Express 7, 427-435 (2000).
    [CrossRef] [PubMed]
  30. A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002).
    [PubMed]
  31. R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, "Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains," J. Geophys. Res. 106, 20333-20348 (2001).
    [CrossRef]
  32. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, "Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China," Appl. Opt. 46, 6302-6308 (2007).
    [CrossRef] [PubMed]
  33. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, "Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy," Appl. Phys. B 75, 165-172 (2002).
    [CrossRef]
  34. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, S. Geiger, and Q. Lü, "High peak and average power all-solid-state laser systems for airborne lidar applications," LaserOpto 32, 29-37 (2000).
  35. R. L. Schmitt and L. A. Rahn, "Diode-laser-pumped Nd:YAG laser injection seeding system," Appl. Opt. 25, 629-633 (1986).
    [CrossRef] [PubMed]
  36. M. Fiebig, C. Stein, F. Schröder, P. Feldpausch, and A. Petzold, "Inversion of data containing information on the aerosol particle size distribution using multiple instruments," J. Aerosol Sci. 36, 1353-1372 (2005).
    [CrossRef]
  37. A. Petzold, M. Fiebig, H. Flentje, A. Keil, U. Leiterer, F. Schröder, A. Stifter, M. Wendisch, and P. Wendling, "Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98)," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2001JD001043 (2002).
    [CrossRef]
  38. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmos. Ocean. Technol. 17, 1469-1482 (2000).
    [CrossRef]

2007

2005

M. Fiebig, C. Stein, F. Schröder, P. Feldpausch, and A. Petzold, "Inversion of data containing information on the aerosol particle size distribution using multiple instruments," J. Aerosol Sci. 36, 1353-1372 (2005).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källn, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

2002

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

A. Petzold, M. Fiebig, H. Flentje, A. Keil, U. Leiterer, F. Schröder, A. Stifter, M. Wendisch, and P. Wendling, "Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98)," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2001JD001043 (2002).
[CrossRef]

A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002).
[PubMed]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, "Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy," Appl. Phys. B 75, 165-172 (2002).
[CrossRef]

2001

R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, "Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains," J. Geophys. Res. 106, 20333-20348 (2001).
[CrossRef]

R. Miles, W. Lempert, and J. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, 33-51 (2001).
[CrossRef]

C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

2000

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmos. Ocean. Technol. 17, 1469-1482 (2000).
[CrossRef]

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, S. Geiger, and Q. Lü, "High peak and average power all-solid-state laser systems for airborne lidar applications," LaserOpto 32, 29-37 (2000).

J. Biele, G. Beyerle, and G. Baumgarten, "Polarization lidar: corrections of instrumental effects," Opt. Express 7, 427-435 (2000).
[CrossRef] [PubMed]

1999

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, "On Rayleigh optical depth calculations," J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

1997

1994

1990

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar measurement of troposheric backscatter-ratio with barium atomic blocking filters," J. Atmos. Ocean. Technol. 7, 876-881 (1990).
[CrossRef]

1986

1983

1981

J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
[CrossRef] [PubMed]

G. W. Kattawar, A. T. Young, and T. J. Humphreys, "Inelastic scattering in planetary atmospheres. 1. The Ring effect, without aerosols," Astrophys. J. 243, 1049-1057 (1981).
[CrossRef]

A. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981).
[CrossRef] [PubMed]

1974

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

1964

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least square procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Anal. Chem.

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least square procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Appl. Opt.

J. N. Forkey, W. R. Lempert, and R. B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG wavelengths," Appl. Opt. 36, 6729-6738 (1997).
[CrossRef]

A. T. Young and G. W. Kattawar, "Rayleigh-scattering line profiles," Appl. Opt. 22, 3668-3670 (1983).
[CrossRef] [PubMed]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, "Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China," Appl. Opt. 46, 6302-6308 (2007).
[CrossRef] [PubMed]

R. L. Schmitt and L. A. Rahn, "Diode-laser-pumped Nd:YAG laser injection seeding system," Appl. Opt. 25, 629-633 (1986).
[CrossRef] [PubMed]

J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation," Appl. Opt. 22, 3716-3724 (1983).
[CrossRef] [PubMed]

H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983).
[CrossRef] [PubMed]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, "Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations," Appl. Opt. 46, 6606-6622 (2007).
[CrossRef] [PubMed]

A. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981).
[CrossRef] [PubMed]

C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001).
[CrossRef]

Appl. Phys. B

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, "Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy," Appl. Phys. B 75, 165-172 (2002).
[CrossRef]

Astrophys. J.

G. W. Kattawar, A. T. Young, and T. J. Humphreys, "Inelastic scattering in planetary atmospheres. 1. The Ring effect, without aerosols," Astrophys. J. 243, 1049-1057 (1981).
[CrossRef]

Bull. Am. Meteorol. Soc.

A. Stoffelen, J. Pailleux, E. Källn, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Can. J. Phys.

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

J. Aerosol Sci.

M. Fiebig, C. Stein, F. Schröder, P. Feldpausch, and A. Petzold, "Inversion of data containing information on the aerosol particle size distribution using multiple instruments," J. Aerosol Sci. 36, 1353-1372 (2005).
[CrossRef]

J. Atmos. Ocean. Technol.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmos. Ocean. Technol. 17, 1469-1482 (2000).
[CrossRef]

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, "On Rayleigh optical depth calculations," J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar measurement of troposheric backscatter-ratio with barium atomic blocking filters," J. Atmos. Ocean. Technol. 7, 876-881 (1990).
[CrossRef]

D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, "Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar," J. Atmos. Ocean. Technol. 24, 1377-1388 (2007).
[CrossRef]

J. Atmos. Sci.

J. A. Coakley, R. D. Cess, and F. B. Yurevich, "The effect of troposheric aerosols on the earth's radiation budget: a parameterization for climate models," J. Atmos. Sci. 40, 116-138 (1983).
[CrossRef]

J. Geophys. Res.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, "Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains," J. Geophys. Res. 106, 20333-20348 (2001).
[CrossRef]

A. Petzold, M. Fiebig, H. Flentje, A. Keil, U. Leiterer, F. Schröder, A. Stifter, M. Wendisch, and P. Wendling, "Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98)," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2001JD001043 (2002).
[CrossRef]

LaserOpto

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, S. Geiger, and Q. Lü, "High peak and average power all-solid-state laser systems for airborne lidar applications," LaserOpto 32, 29-37 (2000).

Meas. Sci. Technol.

R. Miles, W. Lempert, and J. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, 33-51 (2001).
[CrossRef]

Opt. Eng.

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-142.

R. Ferrare, C. Hostetler, J. Hair, A. Cook, D. Harper, S. Burton, M. Clayton, A. Clarke, P. Russell, and J. Redemann, "Airborne high spectral resolution lidar aerosol measurements during MILAGRO and TEXAQS/GOMACCS," presented at the 87th Annual Meeting of the American Meteorological Society, San Antonio, Texas, 14-18 January 2007.
[PubMed]

S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode. Atlas III (Edition du CNRS, 1978).

A. Petzold, B. Weinzierl, M. Esselborn, G. Ehret, M. Fiebig, A. Fix, C. Kiemle, K. Rasp, and M. Wirth, "Technical support of the EarthCARE Mission for the validation of spaceborne aerosol products during the Saharan Mineral Dust Experiment," European Space Research and Technology Centre (ESTEC) contract 19429/06/NL/AR (2007).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1975).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

J. N. Forkey, Precision Optics Corporation, 22 East Broadway, Gardner, Massachusetts 01440 (personal communication, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Measured iodine transmission spectrum at 563.244   THz together with molecular backscatter spectrum calculated with the S6-Tenti model for an atmospheric temperature of 300 K and pressure of 1000 hPa.

Fig. 2
Fig. 2

Measured interference filter transmission and calculated rotational Raman spectrum at 563.244   THz .

Fig. 3
Fig. 3

Schematic of the transmitter system.

Fig. 4
Fig. 4

Schematic of the receiver module used for detection at 532   nm . BS, beam splitter; CF, cool finger; IF, interference filter; L, lens; M, mirror; PBS, polarization beam splitter; PMT, photomultiplier; WP, quarter-wave plate.

Fig. 5
Fig. 5

Flight path of the DLR Falcon on 4 June between 09:15 and 12:35 UTC. The flight level is color coded.

Fig. 6
Fig. 6

North–south cross section of the HSRL backscatter ratio and the aerosol extinction coefficient during the measurement flight on 4 June 2006 at 09:45 UTC. The altitude is above sea level.

Fig. 7
Fig. 7

Measured atmospheric backscatter in the parallel-polarized combined and molecular channel as a function of distance from transmitter averaged over 13 s on 4 June 2006.

Fig. 8
Fig. 8

(a) Backscatter ratio of the parallel-polarized molecular and combined channel, (b) total aerosol backscatter coefficient, (c) aerosol optical thickness, (d) aerosol extinction coefficient, (e) aerosol depolarization ratio, (f) lidar ratio. Profiles averaged over 13 s on 4 June 2006. Vertical resolution is 15 m except 540 m for (d) and (f). The error bars denote the 3σ statistical deviation.

Fig. 9
Fig. 9

Relative deviation of κ m ( ν , T ) induced by laser frequency fluctuations of ± 5 , ± 10 , and ± 15   MHz , respectively.

Fig. 10
Fig. 10

Relative systematic errors of the (a) aerosol backscatter and (b) extinction measurement arising from the uncertainties in (1) spectral purity, (2) atmospheric temperature, (3) normalization, (4) laser frequency, (5) depolarization ratio, and (6) total error.

Fig. 11
Fig. 11

Comparison of IFT Raman and DLR HSRL (a) backscatter, (b) extinction, and (c) lidar ratio profiles at 532   nm over Ouarzazate on 3 June 2006 at 04:14 UTC. The vertical resolution is 300 m for the Raman measurements and the HSRL extinction coefficient and lidar ratio. The vertical resolution is 15 m for the HSRL backscatter coefficient profile. The averaging time is 11 s for the HSRL and 1800 s for the Raman lidar, respectively. The error bars indicate the 3 σ statistical error.

Fig. 12
Fig. 12

Correlation of extinction coefficient profiles measured by IFT Raman lidar, BERTHA, and DLR HSRL at six aircraft overpasses during the first SAMUM field phase in May–June 2006. Squares denote the comparison to rotational Raman lidar; circles indicate vibrational Raman measurements. The error bars indicate a relative statistical deviation of 15%.

Tables (3)

Tables Icon

Table 1 System Parameters of the HSRL System

Tables Icon

Table 2 Error Sources and Their Estimated Uncertainties

Tables Icon

Table 3 Comparison of Aerosol Optical Thickness Measured with HSRL and Sunphotometers During the SAMUM Field Campaign in 2006 a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

κ m ( T , p ) = τ ( ν ) R ( ν , T , p ) l ( ν ν ) d ν d ν R ( ν , T , p ) l ( ν ν ) d ν ,
κ a = τ ( ν 0 ) .
P C ( r ) = η C E 0 c 2 A r 2 τ 2 ( r ) [ β m ( r ) + β a ( r ) ] ,
P M ( r ) = η M E 0 c 2 A r 2 τ 2 ( r ) [ κ m ( r ) β m ( r ) + κ a β a ( r ) ] ,
P ( r ) = η E 0 c 2 A r 2 τ 2 ( r ) [ β m ( r ) + β a ( r ) ] ,
τ 2 ( r ) = τ m 2 ( r ) τ a 2 ( r ) = exp [ 2 0 r ( α m ( r ) + α a ( r ) ) d r ] ,
α m ( r ) = 8 π 3 ( 45 + 10 ϵ ) ( 45 + 7 ϵ ) β m ( r ) ,
β m ( r ) = σ ( π ) Ω N ( r ) ,
P T ( r ) = P C + η C η P ( r ) .
R C ( r ) = P C ( r ) C C r 2 τ m 2 ( r ) β m ( r ) = τ a 2 ( r ) [ 1 + β a ( r ) β m ( r ) ] ,
R M ( r ) = P M ( r ) C M r 2 τ m 2 ( r ) β m ( r ) = τ a 2 ( r ) [ κ m ( r ) + κ a β a ( r ) β m ( r ) ] ,
R T ( r ) = P T ( r ) C T r 2 τ m 2 ( r ) β m T ( r ) = τ a 2 ( r ) [ 1 + β a T ( r ) β m T ( r ) ] ,
τ a 2 ( r ) = R M ( r ) κ a R C ( r ) κ m ( r ) κ a .
t a ( r ) = 1 2 ln [ τ a 2 ( r ) ] ,
α a ( r ) = r t a ( r ) .
δ a ( r ) = β a ( r ) β a ( r ) = [ 1 + δ m ] δ v ( r ) R T ( r ) / τ a 2 ( r ) [ 1 + δ v ( r ) ] δ m [ 1 + δ m ] R T ( r ) / τ a 2 ( r ) [ 1 + δ v ( r ) ] ,
δ v ( r ) = η C η P ( r ) P C ( r ) .
β a T ( r ) = [ R C ( r ) τ a 2 ( r ) 1 ] β m ( r ) ( 1 + δ a ( r ) ) .
S a ( r ) = α a ( r ) β a T ( r ) .

Metrics