Abstract

We propose the design of an optical limiter based on a microelectromechanical systems deformable mirror. The design is based on aperturing focused light reflected out of an optically driven deformable mirror, deformed in a parabolic form. We derive an expression for the reflected light intensity, and we show that the reflected light saturates as a function of back illumination light intensity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible,” Opt. Lett. 23, 94-96 (1998)
    [CrossRef]
  2. G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
    [CrossRef]
  3. Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
    [CrossRef]
  4. D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
    [CrossRef]
  5. Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775-777 (1993).
    [CrossRef] [PubMed]
  6. R. R. Birge, “Photophysics of light transduction in rhodopsin and bacteriorhodopsin,” Annu. Rev. Biophys. Bioeng. 10, 315-354 (1981).
    [CrossRef] [PubMed]
  7. F. E. Hernández, S. Yang, E. W. Van Stryland, and D. J. Hagan, “High-dynamic-range cascaded-focus optical limiter,” Opt. Lett. 25, 1180-1182 (2000).
    [CrossRef]
  8. G. Asimellis, J. Khoury, and C. L. Woods, “Effects of saturation on the nonlinear incoherent-erasure joint-transform correlator,” J. Opt. Soc. Am. A 13, 1345-1356 (1996).
    [CrossRef]
  9. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1982)
    [CrossRef] [PubMed]
  10. D. Psaltis and N. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback,” Opt. Lett. 10, 98-100 (1985)
    [CrossRef] [PubMed]
  11. B. Haji-Saeed, R. Kolluru, D. Pyburn, R. Leon, S. K. Sengupta, M. Testorf, W. Goodhue, J. Khoury, A. Drehman, C. L. Woods, and J. Kierstead, “Photoconductive optically driven deformable membrane for spatial light modulator applications utilizing GaAs substrates,” Appl. Opt. 45, 2615-2622 (2006)
    [CrossRef] [PubMed]
  12. J. Khoury, A. Drehman, C. L. Woods, B. Haji-Saeed, S. K. Sengupta, W. Goodhue, and J. Kierstead, “Optically driven microelectromechanical-system deformable mirror under high-frequency AC bias,” Opt. Lett. 31, 808-810 (2006)
    [CrossRef] [PubMed]
  13. B. Haji-Saeed, R. Kolluru, D. Pyburn, R. Leon, S. K. Sengupta, M. Testorf, W. Goodhue, J. Khoury, A. Drehman, C. L. Woods, and J. Kierstead, “Photoconductive optically driven deformable membrane under high-frequency bias: fabrication, characterization, and modeling,” Appl. Opt. 45, 3226-3236 (2006)
    [CrossRef] [PubMed]
  14. C. E. Mungan,“Parabolic mirror” (Fall 1999), http://www.usna.edu/Users/physics/mungan/Scholarship/ParabolicMirror.pdf.

2006 (3)

2004 (1)

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

2003 (1)

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

2002 (1)

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

2000 (1)

1998 (1)

1996 (1)

1993 (1)

1985 (1)

1982 (1)

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1982)
[CrossRef] [PubMed]

1981 (1)

R. R. Birge, “Photophysics of light transduction in rhodopsin and bacteriorhodopsin,” Annu. Rev. Biophys. Bioeng. 10, 315-354 (1981).
[CrossRef] [PubMed]

Asimellis, G.

Birge, R.

Birge, R. R.

R. R. Birge, “Photophysics of light transduction in rhodopsin and bacteriorhodopsin,” Annu. Rev. Biophys. Bioeng. 10, 315-354 (1981).
[CrossRef] [PubMed]

Campillo, A. J.

de Araujo, C. B.

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

Drehman, A.

Farhat, N.

Goodhue, W.

Gross, R.

Hagan, D. J.

Haji-Saeed, B.

Hernández, F. E.

Hopfield, J. J.

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1982)
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

Khoury, J.

Kierstead, J.

Kimball, B. R.

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Kolluru, R.

Kothapalli, S. R.

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Leon, R.

Lin, H.

Messaddeq, Y.

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

Moharam, M. G.

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

Mungan, C. E.

C. E. Mungan,“Parabolic mirror” (Fall 1999), http://www.usna.edu/Users/physics/mungan/Scholarship/ParabolicMirror.pdf.

Poirier, G.

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

Poulain, M.

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

Psaltis, D.

Pyburn, D.

Rao, D. N.

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Rao, D. V. G. L. N.

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Ribeiro, S. J. L.

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

Sengupta, S. K.

Siganakis, G.

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

Song, Q. W.

Testorf, M.

Tonucci, R. J.

Van Stryland, E. W.

Woods, C. L.

Wu, S.-T.

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

Yang, S.

Yelleswarapu, C. S.

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Zhang, C.

Annu. Rev. Biophys. Bioeng. (1)

R. R. Birge, “Photophysics of light transduction in rhodopsin and bacteriorhodopsin,” Annu. Rev. Biophys. Bioeng. 10, 315-354 (1981).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Huang, G. Siganakis, M. G. Moharam, and S.-T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445(2004).
[CrossRef]

J. Appl. Phys. (1)

G. Poirier, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Tungstate fluorophosphate glasses as optical limiters,” J. Appl. Phys. 91, 10221-10223 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

D. N. Rao, C. S. Yelleswarapu, S. R. Kothapalli, D. V. G. L. N. Rao, and B. R. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 22, 2848-2853 (2003).
[CrossRef]

Opt. Lett. (5)

Proc. Natl. Acad. Sci. USA (1)

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1982)
[CrossRef] [PubMed]

Other (1)

C. E. Mungan,“Parabolic mirror” (Fall 1999), http://www.usna.edu/Users/physics/mungan/Scholarship/ParabolicMirror.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

MEMS deformable device.

Fig. 2
Fig. 2

Deformable parabolic mirror.

Fig. 3
Fig. 3

Proposed architecture for the MEMS based optical limiter.

Fig. 4
Fig. 4

Light reflectance from a parabolic membrane mirror.

Fig. 5
Fig. 5

Input–output nonlinear transfer function of nonlinear optical limiter MEMS.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

h = ε 0 r 1 2 q 2 μ n 2 ( n + Δ n ) 2 A 2 V 2 32 T s 2 ( L 2 ω 2 ( π ε 0 r 1 2 s ) 2 + q 2 μ n 2 ( n + Δ n ) 2 A d 2 ) ,
Δ h = ε 0 3 r 1 6 q 2 μ n 2 A d 2 V 2 L 2 ω 2 π 2 ( 2 n Δ n + Δ n 2 ) 8 T [ s 2 q 2 μ n 2 ( n + Δ n ) 2 A d 2 + L 2 ω 2 π 2 ε 0 2 r 1 4 ] [ s 2 q 2 μ n 2 n 2 A d 2 + L 2 ω 2 π 2 ε 0 2 r 1 4 ] ,
h s = ε 0 r 1 2 V 2 32 T s 2 .
I out = π δ s 2 π ( 2 r m ) 2 I in ,
I out = G ( y ) I in ,
G ( y ) = ( A y A y + B ) 2 ,
δ = 4 π λ f D ,
tan θ = r 1 δ / 2 f ,
tan θ = r m δ / 2 f f s ,
r m = ( 1 f s f ) ( r 1 δ 2 ) + δ 2 .
y = m x 2 + b .
f = 1 / 4 m .
y = h r 1 2 x 2 + s h ,
f = 1 4 m = 1 4 ( h / r 1 2 ) = r 1 2 4 h ,
f s = 1 4 m = 1 4 ( h s / r 1 2 ) = r 1 2 4 h s .
r m = ( 1 r 1 2 / 4 h s r 1 2 / 4 h ) ( r 1 δ 2 ) + δ 2 = ( 1 h h s ) ( r 1 δ 2 ) + δ 2 .
I out = A 2 ( a + b ( Δ n + n ) 2 ) 2 ( A ( a + b ( Δ n + n ) 2 ) + B ) 2 I in ,
A = 8 λ T s 2 ,
B = r 1 6 V 2 L 2 ω 2 π 3 ε 0 3 ,
a = L 2 ω 2 π 2 r 1 4 ε 0 2 ,
b = q 2 μ n 2 A d 2 s 2 .
Δ n = α τ n I inp h ν A d .

Metrics