Abstract

We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (32nm), nondestructive and noncontact measurement, and larger measurement ranges (±80μm) for a numerical aperture of 0.21in a transparent measurement medium. The technique can be used without conductivity and pretreatment.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
    [CrossRef] [PubMed]
  2. M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
    [CrossRef]
  3. A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
    [CrossRef]
  4. G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
    [CrossRef]
  5. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
    [CrossRef]
  6. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
    [CrossRef]
  7. M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
    [CrossRef]
  8. L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
    [CrossRef]
  9. B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: the Genesis of Live Cell Imaging, Vol. PM161 of SPIE Press Monographs (SPIE Press, 2005), pp. 83-149.
  10. T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, “High precision optical surface sensor,” Appl. Opt. 27, 103-108 (1988).
    [CrossRef] [PubMed]
  11. S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on the surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45, 6702-6707 (2006).
    [CrossRef] [PubMed]
  12. M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
    [CrossRef]
  13. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
    [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-29.

2007

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

2006

S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on the surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45, 6702-6707 (2006).
[CrossRef] [PubMed]

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

2005

B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: the Genesis of Live Cell Imaging, Vol. PM161 of SPIE Press Monographs (SPIE Press, 2005), pp. 83-149.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
[CrossRef] [PubMed]

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

2003

A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
[CrossRef]

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

2001

L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
[CrossRef]

2000

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

1999

M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
[CrossRef]

1996

D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
[CrossRef]

1988

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-29.

T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, “High precision optical surface sensor,” Appl. Opt. 27, 103-108 (1988).
[CrossRef] [PubMed]

Agrad, D. A.

M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
[CrossRef]

Badoual, M.

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

Cambi, A.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Cappello, G.

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

Chang, R. S.

Chen, C. D.

D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
[CrossRef]

Chiu, M. H.

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on the surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45, 6702-6707 (2006).
[CrossRef] [PubMed]

D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
[CrossRef]

de Bakker, B. I.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

de Lange, F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Figdor, C. G.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Fu, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

García-Parajó, M. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Garini, Y.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
[CrossRef] [PubMed]

Guo, B.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
[CrossRef]

Herz, H.

L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
[CrossRef]

Hobbs, J. K.

A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
[CrossRef]

Humphris, A. D. L.

A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
[CrossRef]

Kohno, T.

Koopman, M.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Lai, C. W.

Lin, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Lipson, S. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Liu, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Masters, B. R.

B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: the Genesis of Live Cell Imaging, Vol. PM161 of SPIE Press Monographs (SPIE Press, 2005), pp. 83-149.

Miles, M. J.

A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
[CrossRef]

Miyamoto, K.

Musha, T.

Niu, H.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Notcovich, A. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Ott, A.

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

Ozawa, N.

Prost, J.

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

Qu, J.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-29.

Schaefer, L. H.

L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
[CrossRef]

Schuster, D.

L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
[CrossRef]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
[CrossRef]

Shih, B. Y.

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

Su, D. C.

D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
[CrossRef]

van Hulst, N. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Vermolen, B. J.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
[CrossRef] [PubMed]

Wang, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Wang, S. F.

Young, I. T.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
[CrossRef] [PubMed]

Zhuk, V.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006).
[CrossRef]

Appl. Phys. Lett.

A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003).
[CrossRef]

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007).
[CrossRef]

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Curr. Opin. Biotechnol.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005).
[CrossRef] [PubMed]

J. Microsc. (Oxford)

M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999).
[CrossRef]

J. Microsc. (Oxford)

L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001).
[CrossRef]

NanoBioTechnology

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005).
[CrossRef]

Phys. Rev. E

G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003).
[CrossRef]

Precis. Eng.

D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-29.

B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: the Genesis of Live Cell Imaging, Vol. PM161 of SPIE Press Monographs (SPIE Press, 2005), pp. 83-149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TADM experimental setup.

Fig. 2
Fig. 2

(a) Beam divergence that is due to increased surface height ( Δ z > 0 ). (b) Beam convergence that is due to decreased surface height ( Δ z < 0 ).

Fig. 3
Fig. 3

Simulation results of phase difference Φ versus surface height Δ z for different NA values.

Fig. 4
Fig. 4

Three-dimensional measurement results from the TADM with a NA of 0.21 for a 600 line / mm grating.

Fig. 5
Fig. 5

Two-dimensional measurement results from (a)  the TADM and (b)  the AFM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α sp = sin 1 ( 1 n 1 ( ε 3 ε 4 ε 3 + ε 4 ) 1 / 2 ) ,
r t = | r t | exp ( i δ t ) , t = p , s ,
ϕ = δ p δ s .
Δ z f 2 D ( 2 n n 1 ) Δ θ D 2 NA 2 ( n n 1 ) Δ θ ,

Metrics