Abstract

Phase-measuring profilometry is an accurate and effective technique for performing three-dimensional (3D) shape and deformation measurements of diffuse objects by fringe projection. However, phase analysis cannot be performed in underexposed or overexposed areas of the detector when an object with wide reflectance is measured. A novel intensity range extension method using a digital micromirror device (DMD) camera is proposed. In the optics of the DMD camera, each pixel of the CCD corresponds exactly to each mirror of the DMD. The phase-shifted fringe patterns with high contrast can be easily captured by programming an inverse intensity pattern that depends on the reflectance of the object. Our method can provide a wider intensity range and higher accuracy for 3D shape measurement than other conventional methods in both underexposed and overexposed areas. The measurements of a replica of a metallic art object and a flat plane are analyzed experimentally to verify the effectiveness of our method. In the experiment, the percentage of invalid points due to underexposure and overexposure can be reduced from 20% to 1%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
    [CrossRef]
  2. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
    [CrossRef]
  3. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Shape measurement by use of temporal Fourier transformation in dual-beam illumination speckle interferometry,” Appl. Opt. 37, 3385-3390 (1998).
    [CrossRef]
  4. E. A. Barbosa and A. Lino, “Multiwavelength electronic speckle pattern interferometry for surface shape measurement,” Appl. Opt. 46, 2624-2631 (2007).
    [CrossRef]
  5. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610-7616 (2006).
    [CrossRef]
  6. H. O. Saldner and J. M. Huntley, “Profilometry by temporal phase unwrapping and spatial light modulator based fringe projector,” Opt. Eng. 36, 610-615 (1997).
    [CrossRef]
  7. S. Kakunai, T. Sakamoto, and K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Appl. Opt. 38, 2824-2828 (1999).
    [CrossRef]
  8. P. Carre, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
    [CrossRef]
  9. J. C. Wyant, “Interferometry optical metrology: basic principles and new systems,” Laser Focus 65-71 (1982).
  10. J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
    [CrossRef]
  11. P. Hariharan, “Phase-shifting interferometry: minimization of systematic errors,” Opt. Eng. 39, 967-969 (2000).
    [CrossRef]
  12. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2506 (1987).
  13. P. D. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723-4730 (1995).
  14. Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).
  15. M. Fujigaki and Y. Morimoto, “Accuracy of real-time shape measurement by phase-shifting grid method using correlation,” JSME Int. J., Ser. A 43, 314-320 (2000).
  16. Y. Morimoto and M. Fujisawa, “Fringe pattern analysis by a phase-shifting method using Fourier transform,” Opt. Eng. 33, 3709-3714 (1994).
    [CrossRef]
  17. K. P. Proll, J. M. Nivet, C. Voland, and H. J. Tiziani, “Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three-channel technique,” Appl. Opt. 41, 130-135 (2002).
    [CrossRef]
  18. S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging: optical control of pixel exposures over space and time,” Ninth IEEE International Conference on Computer Vision (ICCV'03) (IEEE Computer Society, 2003), Vol. 2, 1168-1175
  19. S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
    [CrossRef]
  20. Y. Morimoto and M. Fujigaki, “Means and equipment of real-time shape measurement using a DMD reflection-type CCD camera,” Japan patent 3507865 (9 January 2004).
  21. Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).
  22. S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).
  23. L. J. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE 1150, 86-102 (1990).
  24. J. B. Sampsell, “An overview of the digital micromirror device (DMD) and its application to projection displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1993), Vol. 24, pp. 1012-1015.
  25. L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).
  26. J. M. Florence and L. A. Yoder, “Display system architectures for digital micromirror device (DMD) based projectors,” Proc. SPIE 2650, 193-208 (1996).
  27. S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
    [CrossRef]
  28. S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” submitted to Exp. Mech. .
  29. W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19
  30. R. Hofling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329(2004).
  31. K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082-5089 (1988).

2007 (1)

2006 (2)

2005 (2)

S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
[CrossRef]

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

2004 (1)

R. Hofling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329(2004).

2003 (3)

Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).

W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19

S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging: optical control of pixel exposures over space and time,” Ninth IEEE International Conference on Computer Vision (ICCV'03) (IEEE Computer Society, 2003), Vol. 2, 1168-1175

2002 (1)

2000 (3)

M. Fujigaki and Y. Morimoto, “Accuracy of real-time shape measurement by phase-shifting grid method using correlation,” JSME Int. J., Ser. A 43, 314-320 (2000).

P. Hariharan, “Phase-shifting interferometry: minimization of systematic errors,” Opt. Eng. 39, 967-969 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

1999 (2)

S. Kakunai, T. Sakamoto, and K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Appl. Opt. 38, 2824-2828 (1999).
[CrossRef]

Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).

1998 (2)

1997 (2)

H. O. Saldner and J. M. Huntley, “Profilometry by temporal phase unwrapping and spatial light modulator based fringe projector,” Opt. Eng. 36, 610-615 (1997).
[CrossRef]

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).

1996 (1)

J. M. Florence and L. A. Yoder, “Display system architectures for digital micromirror device (DMD) based projectors,” Proc. SPIE 2650, 193-208 (1996).

1995 (1)

1994 (1)

Y. Morimoto and M. Fujisawa, “Fringe pattern analysis by a phase-shifting method using Fourier transform,” Opt. Eng. 33, 3709-3714 (1994).
[CrossRef]

1993 (1)

J. B. Sampsell, “An overview of the digital micromirror device (DMD) and its application to projection displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1993), Vol. 24, pp. 1012-1015.

1990 (1)

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE 1150, 86-102 (1990).

1988 (1)

1987 (1)

1984 (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

1982 (1)

J. C. Wyant, “Interferometry optical metrology: basic principles and new systems,” Laser Focus 65-71 (1982).

1966 (1)

P. Carre, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Ahl, E.

R. Hofling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329(2004).

Barbosa, E. A.

Bhushan, B.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

Branzoi, V.

S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging: optical control of pixel exposures over space and time,” Ninth IEEE International Conference on Computer Vision (ICCV'03) (IEEE Computer Society, 2003), Vol. 2, 1168-1175

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Buller, G. S.

Carre, P.

P. Carre, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Cova, S.

Eiju, T.

Florence, J. M.

J. M. Florence and L. A. Yoder, “Display system architectures for digital micromirror device (DMD) based projectors,” Proc. SPIE 2650, 193-208 (1996).

Franze, B.

Fujigaki, M.

Y. Morimoto and M. Fujigaki, “Means and equipment of real-time shape measurement using a DMD reflection-type CCD camera,” Japan patent 3507865 (9 January 2004).

S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
[CrossRef]

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).

M. Fujigaki and Y. Morimoto, “Accuracy of real-time shape measurement by phase-shifting grid method using correlation,” JSME Int. J., Ser. A 43, 314-320 (2000).

Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” submitted to Exp. Mech. .

Fujisawa, M.

Y. Morimoto and M. Fujisawa, “Fringe pattern analysis by a phase-shifting method using Fourier transform,” Opt. Eng. 33, 3709-3714 (1994).
[CrossRef]

Gao, Q.

Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).

George, O. E.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

Groot, P. D.

Haible, P.

Haist, T.

W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19

Hariharan, P.

Hofling, R.

R. Hofling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329(2004).

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE 1150, 86-102 (1990).

Huntley, J. M.

H. O. Saldner and J. M. Huntley, “Profilometry by temporal phase unwrapping and spatial light modulator based fringe projector,” Opt. Eng. 36, 610-615 (1997).
[CrossRef]

Ida, T.

Iwata, K.

Joenathan, C.

Kakunai, S.

Kinnstaetter, K.

Koliopoulos, C. L.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

Korner, K.

W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19

Lino, A.

Lohmann, A. W.

Massa, J. S.

Matsunaga, Y.

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

Matui, T.

S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
[CrossRef]

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

Morimoto, Y.

Y. Morimoto and M. Fujigaki, “Means and equipment of real-time shape measurement using a DMD reflection-type CCD camera,” Japan patent 3507865 (9 January 2004).

S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
[CrossRef]

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).

M. Fujigaki and Y. Morimoto, “Accuracy of real-time shape measurement by phase-shifting grid method using correlation,” JSME Int. J., Ser. A 43, 314-320 (2000).

Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).

Y. Morimoto and M. Fujisawa, “Fringe pattern analysis by a phase-shifting method using Fourier transform,” Opt. Eng. 33, 3709-3714 (1994).
[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” submitted to Exp. Mech. .

Nayar, S. K.

S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging: optical control of pixel exposures over space and time,” Ninth IEEE International Conference on Computer Vision (ICCV'03) (IEEE Computer Society, 2003), Vol. 2, 1168-1175

Nivet, J. M.

Oreb, B. F.

Osten, W.

W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19

Proll, K. P.

Ri, S.

S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
[CrossRef]

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” submitted to Exp. Mech. .

Sakamoto, T.

Saldner, H. O.

H. O. Saldner and J. M. Huntley, “Profilometry by temporal phase unwrapping and spatial light modulator based fringe projector,” Opt. Eng. 36, 610-615 (1997).
[CrossRef]

Sampsell, J. B.

J. B. Sampsell, “An overview of the digital micromirror device (DMD) and its application to projection displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1993), Vol. 24, pp. 1012-1015.

Schwider, J.

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Streibl, N.

Tiziani, H. J.

Toda, H.

Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).

Umasuthan, M.

Voland, C.

Walker, A. C.

Wallace, A. M.

Wyant, J. C.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

J. C. Wyant, “Interferometry optical metrology: basic principles and new systems,” Laser Focus 65-71 (1982).

Yamaguchi, I.

Yamashita, K.

Yoder, L. A.

J. M. Florence and L. A. Yoder, “Display system architectures for digital micromirror device (DMD) based projectors,” Proc. SPIE 2650, 193-208 (1996).

Yokota, M.

Appl. Opt. (10)

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998).
[CrossRef]

C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Shape measurement by use of temporal Fourier transformation in dual-beam illumination speckle interferometry,” Appl. Opt. 37, 3385-3390 (1998).
[CrossRef]

E. A. Barbosa and A. Lino, “Multiwavelength electronic speckle pattern interferometry for surface shape measurement,” Appl. Opt. 46, 2624-2631 (2007).
[CrossRef]

I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610-7616 (2006).
[CrossRef]

S. Kakunai, T. Sakamoto, and K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Appl. Opt. 38, 2824-2828 (1999).
[CrossRef]

P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2506 (1987).

P. D. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723-4730 (1995).

K. P. Proll, J. M. Nivet, C. Voland, and H. J. Tiziani, “Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three-channel technique,” Appl. Opt. 41, 130-135 (2002).
[CrossRef]

S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method,” Appl. Opt. 45, 6940-6946 (2006).
[CrossRef]

K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082-5089 (1988).

Exp. Mech. (1)

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” submitted to Exp. Mech. .

J. Robot. Mechatron. (1)

S. Ri, Y. Matsunaga, M. Fujigaki, T. Matui, and Y. Morimoto, “Development of DMD reflection-type CCD camera for phase analysis and shape measurement,” J. Robot. Mechatron. 18, 728-737 (2005).

JSME Int. J., Ser. A (1)

M. Fujigaki and Y. Morimoto, “Accuracy of real-time shape measurement by phase-shifting grid method using correlation,” JSME Int. J., Ser. A 43, 314-320 (2000).

Key Eng. Mater. (1)

Q. Gao, M. Fujigaki, and Y. Morimoto, “Application of digital micro-mirror device to deformation measurement,” Key Eng. Mater. 243-244, 189-194 (2003).

Laser Focus (1)

J. C. Wyant, “Interferometry optical metrology: basic principles and new systems,” Laser Focus 65-71 (1982).

Metrologia (1)

P. Carre, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Opt. Eng. (5)

H. O. Saldner and J. M. Huntley, “Profilometry by temporal phase unwrapping and spatial light modulator based fringe projector,” Opt. Eng. 36, 610-615 (1997).
[CrossRef]

Y. Morimoto and M. Fujisawa, “Fringe pattern analysis by a phase-shifting method using Fourier transform,” Opt. Eng. 33, 3709-3714 (1994).
[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

P. Hariharan, “Phase-shifting interferometry: minimization of systematic errors,” Opt. Eng. 39, 967-969 (2000).
[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Phase reliability evaluation in phase-shifting method using Fourier transform for shape measurement,” Opt. Eng. 44083601 (2005).
[CrossRef]

Proc. SPIE (5)

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE 1150, 86-102 (1990).

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).

J. M. Florence and L. A. Yoder, “Display system architectures for digital micromirror device (DMD) based projectors,” Proc. SPIE 2650, 193-208 (1996).

R. Hofling and E. Ahl, “ALP: universal DMD controller for metrology and testing,” Proc. SPIE 5289B, 322-329(2004).

Y. Morimoto, M. Fujigaki, and H. Toda, “Real-time shape measurement by integrated phase-shifting method,” Proc. SPIE 3744, 118-125 (1999).

Tribol. Trans. (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An optical profilometry for surface characterization of magnetic media,” Tribol. Trans. 27, 101-113 (1984).
[CrossRef]

Other (4)

S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging: optical control of pixel exposures over space and time,” Ninth IEEE International Conference on Computer Vision (ICCV'03) (IEEE Computer Society, 2003), Vol. 2, 1168-1175

W. Osten, T. Haist, and K. Korner, “Active approaches in optical metrology,” in Proceedings of International Conference On Laser Applications and Optical Metrology, C. Shakher and D. S. Mehta, eds. (Anamaya, 2003), pp. 9-19

J. B. Sampsell, “An overview of the digital micromirror device (DMD) and its application to projection displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1993), Vol. 24, pp. 1012-1015.

Y. Morimoto and M. Fujigaki, “Means and equipment of real-time shape measurement using a DMD reflection-type CCD camera,” Japan patent 3507865 (9 January 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DMD camera: (a) schematic design, (b) photograph.

Fig. 2
Fig. 2

Illustration of the relationship between a DMD pattern and the corresponding image captured by the DMD camera: (a) original image, (b) DMD gray-scale pattern, (c) image captured by the DMD camera.

Fig. 3
Fig. 3

Optical system of the phase-measuring profilometry for 3D shape measurement: (a) system setup and arrangement, (b) photograph.

Fig. 4
Fig. 4

Object of measurement and analyzed area ( 30 mm × 45 mm ) .

Fig. 5
Fig. 5

Procedure of intensity range extension before phase analysis and 3D shape measurement: (a) image captured when the gray-scale value of all DMD pixels is set to 32, (b) resulting inverse DMD pattern, (c) image captured by the DMD camera using an adjusted exposure time.

Fig. 6
Fig. 6

Experimental result of the replica of metallic art object as shown in Fig. 4. Results using the conventional method: (a) one of the captured image of fringe distribution with phase-shifted ( n = 0 ), (b) wrapped phase distribution, (c) invalid points distribution, (d) height distribution. Results using the method proposed in this study: (a′) captured fringe image ( n = 0 ), (b′) wrapped phase distribution, (c′) invalid points distribution, (d′) height distribution.

Fig. 7
Fig. 7

Representation of 3D shape in Fig. 6d′

Fig. 8
Fig. 8

3D measurement result of a planar surface at position z = 0 mm : (a) gray image of height distribution, (b) cross-section of line A A in (a). The average error is 26 μm , and the standard deviation for 400 points is 11 μm .

Tables (1)

Tables Icon

Table 1 Invalid Points a in the Analyzed Area b of the Measurement Object

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I n ( i , j ) = r ( i , j ) { a ( i , j ) cos [ ϕ ( i , j ) n α ] + b ( i , j ) } ( α = 2 π / N ) ,
ϕ ( i , j ) = tan 1 n = 0 N 1 I n ( i , j ) sin ( 2 π n N ) n = 0 N 1 I n ( i , j ) cos ( 2 π n N ) .
I dmd ( i , j ) = I des I h I reflect ( i , j ) ,
if | I reflect ( i , j ) I dark | < 3 , then I dmd ( i , j ) = 255 ; if I reflect ( i , j ) > 250 , then I dmd ( i , j ) = 2 ; else I dmd ( i , j ) = I des I h I dark I reflect ( i , j ) I dark .

Metrics