Abstract

We report on a monitoring technique for nitrogen dioxide based on broadband absorption spectroscopy using a blue light-emitting diode (LED) operating around 465nm. The technique is suited for real-time measurements of nitrogen dioxide due to the use of a straightforward data evaluation method, limited interference from other gases, and a low degree of complexity compared with other real-time optical detection techniques having the same precision. Additionally, the use of a LED can reduce the cost of nitrogen dioxide monitoring. Real-time measurements of nitrogen dioxide concentration were demonstrated at atmospheric pressure, which is of great interest for industrial nitrogen dioxide emission monitoring; a detection limit of about 3ppm using a 50-cm-long gas cell with 2s integration time was achieved.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).
  2. EU Council Directive 1999/30/EC, relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, and particulate matter and lead in ambient air (1999).
  3. People's Republic of China Directive 2003 relating to emission standard of air pollutants for thermal power plants (2003).
  4. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, 1994), pp. 27-84.
  5. U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
    [CrossRef]
  6. H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, “Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring,” Appl. Opt. 32, 327-333 (1993).
    [CrossRef] [PubMed]
  7. A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
    [CrossRef] [PubMed]
  8. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077-2088 (2006).
    [CrossRef] [PubMed]
  9. K. A. Fredriksson and H. M. Hertz, “Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system,” Appl. Opt. 23, 1403-1411 (1984).
    [CrossRef] [PubMed]
  10. H. Edner, P. Ragnarson, and E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330-337 (1995).
    [CrossRef] [PubMed]
  11. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt. 44, 5148-5151 (2005).
    [CrossRef] [PubMed]
  12. F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
    [CrossRef]
  13. F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
    [CrossRef]
  14. F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
    [CrossRef] [PubMed]
  15. S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and practical Applications (Springer, 2004), pp. 164-165.
  16. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
    [CrossRef]
  17. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
    [CrossRef]
  18. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
    [CrossRef]
  19. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
    [CrossRef]
  20. J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
    [CrossRef]

2007

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

2006

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077-2088 (2006).
[CrossRef] [PubMed]

2005

2004

S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and practical Applications (Springer, 2004), pp. 164-165.

2003

People's Republic of China Directive 2003 relating to emission standard of air pollutants for thermal power plants (2003).

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

2002

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

1999

EU Council Directive 1999/30/EC, relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, and particulate matter and lead in ambient air (1999).

1998

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

1995

H. Edner, P. Ragnarson, and E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330-337 (1995).
[CrossRef] [PubMed]

1994

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, 1994), pp. 27-84.

1993

1988

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

1984

1979

U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Alnis, J.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Burrows, J. P.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Calvert, J. G.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Cantrell, C. A.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Carleer, M.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Colin, R.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Coquart, B.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Davidson, J. A.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Dehn, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Deters, B.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Edner, H.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Fally, S.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Fredriksson, K. A.

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Gustafsson, U.

Hermans, C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Hertz, H. M.

Himmelmann, S.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Jenouvrier, A.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Kern, C.

Lv, Z.

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Madronich, S.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

McDaniel, A. H.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Mérienne, M. F.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Orphal, J.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

Pätz, H. W.

U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Perner, D.

U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Platt, U.

C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077-2088 (2006).
[CrossRef] [PubMed]

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, 1994), pp. 27-84.

U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

Ragnarson, P.

Richter, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Rippel, B.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

Shetter, R. E.

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Somesfalean, G.

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt. 44, 5148-5151 (2005).
[CrossRef] [PubMed]

Spännare, S.

Svanberg, S.

Trick, S.

Tsouli, A.

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Voigt, S.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

Wallinder, E.

H. Edner, P. Ragnarson, and E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330-337 (1995).
[CrossRef] [PubMed]

Wang, H. S.

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Wu, S. H.

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

Xu, F.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Zhang, Y. G.

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Zhang, Z. G.

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007).
[CrossRef] [PubMed]

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007).
[CrossRef]

Appl. Phys. Lett.

F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006).
[CrossRef]

Environ. Pollut.

A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002).
[CrossRef] [PubMed]

Environ. Sci. Technol.

H. Edner, P. Ragnarson, and E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330-337 (1995).
[CrossRef] [PubMed]

J. Geophys. Res.

U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979).
[CrossRef]

J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998).
[CrossRef]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998).
[CrossRef]

A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Other

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

EU Council Directive 1999/30/EC, relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, and particulate matter and lead in ambient air (1999).

People's Republic of China Directive 2003 relating to emission standard of air pollutants for thermal power plants (2003).

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, 1994), pp. 27-84.

S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and practical Applications (Springer, 2004), pp. 164-165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental optical setup for real-time monitoring of NO 2 .

Fig. 2
Fig. 2

Absorption cross section of NO 2 obtained with a Fourier transform spectrometer (Ref. [16]) and the measured LED original emission spectrum.

Fig. 3
Fig. 3

(a) Original emission spectrum of the blue LED. (b) Absorption spectrum recorded with an NO 2 concentration of 981 ppm at atmospheric pressure in the gas absorption cell. (c) The ratio of the NO 2 absorption spectrum to the original LED spectrum. λ 1 and λ 2 are marked with arrows in the figure.

Fig. 4
Fig. 4

Signal-to-noise ratio versus NO 2 concentration in ppm. Linear extrapolation leads to a minimal detectable concentration of 3 ppm ( SNR = 1 ). Data were collected with a stable gas mixture in a closed absorption cell at atmospheric pressure. Insert: NO 2 concentration recorded over one hour for validation of the system stability, using 437 ppm at atmospheric pressure.

Tables (1)

Tables Icon

Table 1 Data of Concentration, rms Noise, and Signal-to-Noise Ratio Shown in Fig. 4

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P t ( λ ) P o ( λ ) = R ( λ ) exp { [ σ ( λ ) N L ] + α ( λ ) } ,
N = ln { [ P t ( λ 1 ) / P o ( λ 1 ) ] / [ P t ( λ 2 ) / P o ( λ 2 ) ] } [ σ ( λ 1 ) σ ( λ 2 ) ] L ,

Metrics