Abstract

The temperature tuning properties of a liquid crystal (LC) photonic bandgap fiber’s bandgap transmission was investigated in this study. Because of the special temperature responses of the LC’s indices and its phase transition property, the bandgap transmission was found to have different temperature responses at different temperature ranges below the LC’s clearing point temperature. At temperatures lower or higher than the LC’s clearing point, the bandgap transmissions are quite different, which permits switching with an extinction ratio as large as 45dB. At temperatures around the LC’s clearing point, the bandgap transmission was depressed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  3. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
    [CrossRef]
  4. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
    [CrossRef]
  5. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.
  6. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express 16, 4263-4269 (2008).
    [CrossRef] [PubMed]
  7. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fiber,” Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  8. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  9. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  10. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  11. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007).
    [CrossRef] [PubMed]
  13. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007).
    [CrossRef] [PubMed]
  14. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  15. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
    [CrossRef] [PubMed]
  16. J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
    [CrossRef]
  17. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
    [CrossRef]
  18. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215-2217(2008).
    [PubMed]

2008 (1)

2007 (2)

2006 (2)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

2005 (3)

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

2004 (1)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (3)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fiber,” Opt. Lett. 27, 1977-1979 (2002).
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
[CrossRef]

2001 (1)

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

1999 (1)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

1997 (1)

Abeeluck, A. K.

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Alkeskjold, T.

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Alkeskjold, T. T.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Anawati,

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Anawati, A.

Bassi, P.

Birks, T. A.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

Bjarklev, A.

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

Broeng, J.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

de Sterke, C. M.

Dong, X.

Du, J.

Eggleton, B. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fiber,” Opt. Lett. 27, 1977-1979 (2002).
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Gauza, S.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hale, A.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Headley, C.

Hermann, D.

Hermann, D. S.

Jin, L.

Kai, G.

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

Knight, J. C.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

Lægsgaard, J.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Larsen, T.

Li, J.

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Litchinitser, N. M.

Liu, B.

Liu, Y.

Liu, Z.

McPhedran, R. C.

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Noordegraaf, D.

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Rindorf, L.

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Russell, P. St. J.

Scolari, L.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007).
[CrossRef] [PubMed]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
[CrossRef]

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Tanggaard, T.

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

Wang, Z.

Westbrook, P. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

White, T. P.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Wu, S.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Wu, S.-T.

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

Zou, B.

Appl. Opt. (1)

IEEE Electron. Lett. (1)

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006).
[CrossRef]

Opt. Express (5)

Opt. Express. (1)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004).
[CrossRef] [PubMed]

Opt. Lett. (5)

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sectional images of the PCF we used in this study (a) before and (b) after the infusion of LC.

Fig. 2
Fig. 2

Bandgap transmission at temperatures from 30 ° C to 94 ° C .

Fig. 3
Fig. 3

Bandgap transmission at temperatures of 94 ° C , 95.5 ° C , 95.7 ° C , and 103 ° C .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n o ( T ) = A B T Δ n o 3 ( 1 T T c ) β ,
d n o d T = B + β Δ n o 3 T c ( 1 T T c ) β ,
n ¯ ( T ) = A B T ,
Δ n ( T ) = Δ n o ( 1 T T c ) β .

Metrics