Abstract

A high quality fixed holographic grating was recorded in a photorefractive LiNbO3:Fe crystal at about 100°C in a homemade temperature-controlled vacuum chamber. The recording was carried out using self-stabilization techniques with λ=532nm beams guided onto the crystal by polarization maintaining fibers. The diffraction efficiency of the fixed grating was η=0.44 when measured in the recording setup using the same λ=532nm recording beams. A compatible η was measured with λ=633nm in an auxiliary setup, and a 1mrad angular Bragg selectivity at FWMH was estimated, thus demonstrating the uniformity and good quality of the fixed grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
    [CrossRef]
  2. S. W. McCahon, D. Rytz, G. C. Valley, M. B. Klein, and B. A. Wechsler, “Hologram fixing in Bi12TiO20 using heating and an ac electric field,” Appl. Opt. 28, 1967-1969(1989).
    [CrossRef] [PubMed]
  3. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals,” Opt. Lett. 28, 1040-1042 (2003).
    [CrossRef] [PubMed]
  4. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371-380 (2004).
    [CrossRef]
  5. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
    [CrossRef]
  6. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).
  7. I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428-S431 (2003).
    [CrossRef]
  8. R. Weiss and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191-203 (1985).
    [CrossRef]
  9. A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart & Winston, 1985).
  10. J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227-233 (2007).
    [CrossRef] [PubMed]

2007 (1)

2004 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371-380 (2004).
[CrossRef]

2003 (2)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals,” Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428-S431 (2003).
[CrossRef]

1998 (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

1989 (1)

1985 (2)

R. Weiss and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart & Winston, 1985).

1971 (1)

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Amodei, J.

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Arizmendi, L.

Breer, S.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Buse, K.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Carrascosa, M.

de Oliveira, I.

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227-233 (2007).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals,” Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428-S431 (2003).
[CrossRef]

Frejlich, J.

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227-233 (2007).
[CrossRef] [PubMed]

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals,” Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428-S431 (2003).
[CrossRef]

Gaylord, T.

R. Weiss and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Klein, M. B.

Krätzig, E.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

McCahon, S. W.

Peithmann, K.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Rytz, D.

Staebler, D.

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Valley, G. C.

Vogt, H.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Wechsler, B. A.

Weiss, R.

R. Weiss and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart & Winston, 1985).

Appl. Opt. (2)

Appl. Phys. A (1)

R. Weiss and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428-S431 (2003).
[CrossRef]

Opt. Commun. (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371-380 (2004).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Other (2)

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006).

A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart & Winston, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Temperature controlled vacuum chamber showing the fibers and objectives projecting the light onto the photorefractive crystal as well as the photodetectors along the recording beams at the output.

Fig. 2
Fig. 2

Diffraction efficiency measured during the final stage of development with arbitrary time origin.

Fig. 3
Fig. 3

Diffraction efficiency experimental data and best fitting theroretical curves at λ = 633 nm for extraordinary and ordinary polarization. From fitting the measurement beam divergence a = 0.85 mrad was estimated.

Fig. 4
Fig. 4

Theoretical η as a function of Bragg mismatch angle.

Tables (1)

Tables Icon

Table 1 Comparison of the Present Experiment on LNb2 with Previously Reported [10] Experiments on LNb2 and Other Samples Using Simultaneous and Three-Step Processes a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I S = I S 0 ( 1 η ) + I R 0 + 2 η ( 1 η ) I S 0 I R 0 cos ( φ + ψ d sin Ω t ) ,
I R = I R 0 ( 1 η ) + I S 0 2 η ( 1 η ) I S 0 I R 0 cos ( φ + ψ d sin Ω t ) .
I Ω = 4 J 1 ( ψ d ) η ( 1 η ) I S 0 I R 0 sin ( φ ) ,
I 2 Ω = 4 J 2 ( ψ d ) η ( 1 η ) I S 0 I R 0 cos ( φ ) .
V S S V R S / V S R V R R = [ 1 η η ] 2 ,
η ¯ = P d P t 0 ,
P d = θ ¯ π / 2 θ ¯ + π / 2 η e 2 ( θ θ ¯ ) 2 / a 2 d θ ,
P t 0 = π / 2 + π / 2 e 2 θ 2 / a 2 d θ ,
η = sin 2 ν 2 + ξ 2 1 + ξ 2 / ν 2 ,
ν π Δ n d / λ ,
ξ K d θ ¯ / 2 ,
Δ n e = n e 3 r 33 E sc / 2 ,
Δ n o = n o 3 r 13 E sc / 2 ,
ν 633 e ν 633 o = n e 3 r 33 n o 3 r 13 = 2.87 ,
ν 532 e ν 633 e = 0.725 / 0.66 1.1 ,
ν 532 e ν 633 e [ n e 3 / λ ] 532 [ n e 3 / λ ] 633 1.2 ,

Metrics