Abstract

We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we implemented one of the classical methods of off-axis digital holography: the Fourier method. Digital holography allows one to numerically investigate a volume by refocusing the different planes of depth, allowing one to locate the objects under investigation in three dimensions. Furthermore, the phase is directly related to the refractive index, thus to the concentration inside the body. Based on simple symmetry assumptions, we present an original method for determining the concentration profiles inside deformable objects in microconfined flows. Details of the optical and numerical implementation, as well as exemplative experimental results are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Microgravity materials and life sciences research applications of digital holography

Robert B. Owen, Alex A. Zozulya, Michael R. Benoit, and David M. Klaus
Appl. Opt. 41(19) 3927-3935 (2002)

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge
Opt. Lett. 30(5) 468-470 (2005)

Extended focused imaging of a microparticle field with digital holographic microscopy

Maciej Antkowiak, Natacha Callens, Catherine Yourassowsky, and Frank Dubois
Opt. Lett. 33(14) 1626-1628 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription