Abstract

We report a new method to measure the CO2-laser-irradiation-induced refractive index modulation in the core of a single-mode optical fiber for the purpose of design and fabrication of long-period fiber gratings (LPFGs) without applying tension. Using an optical fiber Fabry–Perot interferometer, the laser-induced axial refractive index perturbation was measured. We found that the CO2-laser-irradiation-induced refractive index change in the fiber core had a negative value and that the magnitude was a sensitive function of the laser exposure time following almost a linear relation. Under the assumption of a Gaussian-shaped refractive index modulation profile and based on the first two terms of Fourier series approximation, the measured refractive index perturbations were used to simulate the LPFG transmission spectra. LPFGs with the same laser exposure parameters were fabricated without applying tension, and their spectra were compared with those obtained by simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
    [CrossRef]
  2. Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
    [CrossRef]
  3. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15, 17645-17651 (2007).
    [CrossRef] [PubMed]
  4. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320-1327 (2003).
    [CrossRef]
  5. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  6. Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936-14941(2007).
    [CrossRef] [PubMed]
  7. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
    [CrossRef]
  8. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
    [CrossRef]
  9. T. Erdogan, “Cladding-mode resonances in short- and long period fiber grating filters,” J. Opt. Soc. Am. A. 14, 1760-1773 (1997).
    [CrossRef]
  10. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218-227 (2003).
    [CrossRef]
  11. U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330-335 (1975).
    [CrossRef]
  12. Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
    [CrossRef]
  13. M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.
  14. C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
    [CrossRef]
  15. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in core of optical fibers by CO2 laser irradiations,” Opt. Lett. 26, 1657-1659 (2001).
    [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980).
  17. F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947-3953 (2005).
    [CrossRef]
  18. B. H. Kim, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U.-C. Paek, and W.-T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809-3815 (2002).
    [CrossRef] [PubMed]
  19. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
    [CrossRef]
  20. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
    [CrossRef] [PubMed]
  21. M. I. Bralwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789-1793 (2004).
    [CrossRef]
  22. Corning, Inc., “Corning SMF-28e optical fiber product information,” December 2007, http://www.corning.com/WorkArea/showcontent.aspx?id=7595.

2008 (1)

2007 (2)

2006 (1)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

2005 (1)

2004 (2)

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

M. I. Bralwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789-1793 (2004).
[CrossRef]

2003 (4)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218-227 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
[CrossRef]

1999 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

1997 (1)

T. Erdogan, “Cladding-mode resonances in short- and long period fiber grating filters,” J. Opt. Soc. Am. A. 14, 1760-1773 (1997).
[CrossRef]

1987 (1)

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

1980 (1)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980).

1975 (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

Abe, T.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

Ahn, T.-J.

Akiyama, M.

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Anemogiannis, E.

Bachim, B. L.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980).

Bralwish, M. I.

Chiang, K. S.

Chung, Y.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Deng, H. Y.

Dianov, E. M.

Duan, Y.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Dürr, F.

Erdogan, T.

T. Erdogan, “Cladding-mode resonances in short- and long period fiber grating filters,” J. Opt. Soc. Am. A. 14, 1760-1773 (1997).
[CrossRef]

Gaylord, T. K.

M. I. Bralwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789-1793 (2004).
[CrossRef]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218-227 (2003).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218-227 (2003).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Han, W.-T.

Han, Y.

Han, Y. G.

C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Hanawa, F.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

Hibino, Y.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

Hu, A. Z.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

Huang, Z.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Jiang, J.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

Jin, W.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Kim, B. H.

Kim, C. S.

C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Kim, D. Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Kurkjian, C. R.

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

Lee, B. H.

Li, Y.

Liao, X.

Limberger, H. G.

Liu, Y.

Marques, P. V. S.

May, R. G.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Nishide, K.

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Paek, U. C.

B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in core of optical fibers by CO2 laser irradiations,” Opt. Lett. 26, 1657-1659 (2001).
[CrossRef]

C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
[CrossRef]

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

Paek, U.-C.

Park, Y.

Peng, G. D.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Peng, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Pickrell, G. R.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Qi, B.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936-14941(2007).
[CrossRef] [PubMed]

Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15, 17645-17651 (2007).
[CrossRef] [PubMed]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Rego, G.

Salathé, R. P.

Semjonov, S. L.

Shibata, S.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

Shima, K.

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Tsai, H.-L.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Wada, A.

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Wang, A.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Wang, D. N.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Wang, Y. P.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Wei, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980).

Xiao, H.

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Xu, J.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Yamauchi, R.

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Zhang, P.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Zhu, T.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50, 1565-1566 (1987).
[CrossRef]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

Electron. Lett. (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fiber gratings,” Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[CrossRef]

J. Am. Ceram. Soc. (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A. (1)

T. Erdogan, “Cladding-mode resonances in short- and long period fiber grating filters,” J. Opt. Soc. Am. A. 14, 1760-1773 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Commun. (2)

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229, 209-221 (2004).
[CrossRef]

C. S. Kim, Y. G. Han, B. H. Lee, W.-T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (3)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980).

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically released stress of pure-silica core fiber,” in Optical Fiber Communication Conference Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThG1.

Corning, Inc., “Corning SMF-28e optical fiber product information,” December 2007, http://www.corning.com/WorkArea/showcontent.aspx?id=7595.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Periodic CO 2 -laser-irradiation-induced refractive index modulation in an optical fiber ( W 0 is the Gaussian beam radius of the laser.).

Fig. 2
Fig. 2

Fiber Fabry–Perot interferometer for measurement of refractive index modulation.

Fig. 3
Fig. 3

Block diagram of CO 2 -laser-based LPFG fabrication system.

Fig. 4
Fig. 4

Optical length changes of fiber segment caused by CO 2 laser irradiation with a power of 8 W and exposure time of 125 ms : (a) interference spectra, (b) change in OL as a function of the number of laser exposures.

Fig. 5
Fig. 5

CO 2 -laser-irradiation-induced fiber refractive index changes at laser exposure times of 50, 75, 100, and 125 ms : (a)  OL change as a function of the number of laser exposures; (b)  Δ n max as a function of laser exposure time.

Fig. 6
Fig. 6

Comparison between the measured and the simulated transmission LPFG spectra. The simulations used the data sheet fiber parameters (Corning SMF-28e) and a FWHM index perturbation of 180 μm (same as the measured FWHM of the laser beam). Inset table, detailed comparisons between measured and simulated resonant wavelengths and peak strengths.

Fig. 7
Fig. 7

Comparison between the simulated and the measured transmission LPFG spectra. The simulations used a core–cladding index contrast of 0.355% (slightly modified from the data sheet value) and a FWHM index perturbation of 180 μm (same as the measured FWHM of the laser beam). Inset table, detailed comparisons between measured and simulated resonant wavelengths and peak strengths.

Fig. 8
Fig. 8

Comparison between the simulated and the measured transmission LPFG spectra. The simulations used a core–cladding index contrast of 0.355% (slightly modified from the data sheet value) and a FWHM of 120 μm (smaller than the measured FWHM of the laser beam). Inset table, detailed comparisons between measured and simulated resonant wavelengths and peak strengths.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n max exp ( 2 z 2 W 0 2 ) ,
W FWHM = 2 ln 2 W 0 .
Δ n ( z ) S ( z ) = s 0 + s 1 cos ( 2 π Λ z ) ,
s 0 = Δ n max 1 Λ Λ / 2 Λ / 2 exp ( 2 z 2 W 0 2 ) d z ,
s 1 = Δ n max 2 Λ Λ / 2 Λ / 2 exp ( 2 z 2 W 0 2 ) cos ( 2 π Λ z ) d z .
I = I 1 + I 2 + 2 I 1 I 2 cos ( 4 π λ ( OL ) + ϕ 0 ) ,
( 4 π λ 1 OL ) ( 4 π λ 2 OL ) = 2 π .
OL = λ 1 λ 2 2 ( λ 1 λ 2 ) .
Δ OL single = + Δ n max exp ( 2 z 2 W 0 2 ) d z = Δ n max W 0 π 2 .
Δ OL = m ( Δ OL single ) = ( Δ n max W 0 π 2 ) m ,
Δ OL = Δ λ 1 λ 1 OL ,
Δ n max = 1 m W 0 π / 2 Δ λ 1 λ 1 OL .
λ res Λ = n eff , core n eff , cladding ,
( 2 π λ res n eff , 01 + s 0 ζ 01 , 01 ( λ ) ) ( 2 π λ res n eff , 05 + s 0 ζ 05 , 05 ( λ ) ) = 2 π Λ ,

Metrics