Abstract

We report a new method to measure the CO2-laser-irradiation-induced refractive index modulation in the core of a single-mode optical fiber for the purpose of design and fabrication of long-period fiber gratings (LPFGs) without applying tension. Using an optical fiber Fabry–Perot interferometer, the laser-induced axial refractive index perturbation was measured. We found that the CO2-laser-irradiation-induced refractive index change in the fiber core had a negative value and that the magnitude was a sensitive function of the laser exposure time following almost a linear relation. Under the assumption of a Gaussian-shaped refractive index modulation profile and based on the first two terms of Fourier series approximation, the measured refractive index perturbations were used to simulate the LPFG transmission spectra. LPFGs with the same laser exposure parameters were fabricated without applying tension, and their spectra were compared with those obtained by simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription