Abstract

Backscatter lidar detection systems have been designed and integrated at NASA Langley Research Center using IR heterojunction phototransistors. The design focused on maximizing the system signal-to-noise ratio rather than noise minimization. The detection systems have been validated using the Raman-shifted eye-safe aerosol lidar (REAL) at the National Center for Atmospheric Research. Incorporating such devices introduces some systematic effects in the form of blurring to the backscattered signals. Characterization of the detection system transfer function aided in recovering such effects by deconvolution. The transfer function was obtained by measuring and fitting the system impulse response using single-pole approximation. An iterative deconvolution algorithm was implemented in order to recover the system resolution, while maintaining high signal-to-noise ratio. Results indicated a full recovery of the lidar signal, with resolution matching avalanche photodiodes. Application of such a technique to atmospheric boundary and cloud layers data restores the range resolution, up to 60m, and overcomes the blurring effects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ambrico, A. Amodeo, P. Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847-6865 (2000).
    [CrossRef]
  2. S. Spuler and S. Mayor, “Raman shifter optimized for lidar at a 1.5 micron wavelength,” Appl. Opt. 46, 2990-2995 (2007).
    [CrossRef]
  3. J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998).
    [CrossRef]
  4. D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
    [CrossRef]
  5. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
    [CrossRef]
  6. T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).
  7. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 ?m solid-state laser,” Opt. Lett. 31, 462-464 (2006).
    [CrossRef]
  8. T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).
  9. I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).
  10. O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).
  11. T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).
  12. O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
    [CrossRef]
  13. T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).
  14. N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).
  15. J. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, Vol. 22 of Lightwave Communications Technology, Part D, Photodetectors, R.Willardson and A.Beer, eds. (Academic, 1985), Chap. 5.
  16. S. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
    [CrossRef]
  17. M. Kavaya and R. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444-3453 (1985).
  18. L. Gurdev, T. Dreischuh, and D. Stoyanov, “Deconvolution techniques for improving the resolution of long-pulse lidars,” J. Opt. Soc. Am. A 10, 2296-2306 (1993).
  19. T. Dreischuh, L. Gurdev, and D. Stoyanov, “Effect of pulse-shape uncertainty on the accuracy of deconvolved lidar profiles,” J. Opt. Soc. Am. A 12, 301-306 (1996).
  20. D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).
  21. J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).
  22. S. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, and J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
  23. G. Matthews, “Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the Geostationary Earth Radiation Budget experiments,” Appl. Opt. 43, 6313-6322 (2004).
    [CrossRef]
  24. P. van Cittert, “Zum einfluss der spaltbreite auf die intesitatsveteilung in spektallinien,” Z. Phys. 69, 298-308 (1931).
    [CrossRef]
  25. A. Amini, “Iterative deconvolution with variable convergence speed of the iterations,” Appl. Opt. 34, 1878-1884 (1995).
  26. S. Mayor and S. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
    [CrossRef]
  27. T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).
  28. S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005).
    [CrossRef]
  29. K. Daugherty, Analog-to-Digital Conversion, A Practical Approach (McGraw-Hill, 1995), Chap. 9.
  30. C. Nachtigal, Instrumentation and Control, Fundamentals and Applications (Wiley, 1990), Chap. 2.
  31. V. Kovalev, “Distortions of the extinction coefficient profile caused by systematic errors in lidar,” Appl. Opt. 43, 3191-3198 (2004).
    [CrossRef]
  32. L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).
  33. K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

2007 (3)

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

S. Spuler and S. Mayor, “Raman shifter optimized for lidar at a 1.5 micron wavelength,” Appl. Opt. 46, 2990-2995 (2007).
[CrossRef]

2006 (2)

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 ?m solid-state laser,” Opt. Lett. 31, 462-464 (2006).
[CrossRef]

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

2005 (1)

S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005).
[CrossRef]

2004 (9)

T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

V. Kovalev, “Distortions of the extinction coefficient profile caused by systematic errors in lidar,” Appl. Opt. 43, 3191-3198 (2004).
[CrossRef]

S. Mayor and S. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
[CrossRef]

G. Matthews, “Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the Geostationary Earth Radiation Budget experiments,” Appl. Opt. 43, 6313-6322 (2004).
[CrossRef]

2003 (1)

J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).

2001 (1)

L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).

2000 (2)

P. Ambrico, A. Amodeo, P. Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847-6865 (2000).
[CrossRef]

D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).

1999 (1)

T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).

1998 (1)

J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998).
[CrossRef]

1997 (1)

K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

1996 (1)

1995 (2)

A. Amini, “Iterative deconvolution with variable convergence speed of the iterations,” Appl. Opt. 34, 1878-1884 (1995).

K. Daugherty, Analog-to-Digital Conversion, A Practical Approach (McGraw-Hill, 1995), Chap. 9.

1993 (1)

1990 (1)

C. Nachtigal, Instrumentation and Control, Fundamentals and Applications (Wiley, 1990), Chap. 2.

1988 (1)

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

1986 (1)

S. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

1985 (2)

J. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, Vol. 22 of Lightwave Communications Technology, Part D, Photodetectors, R.Willardson and A.Beer, eds. (Academic, 1985), Chap. 5.

M. Kavaya and R. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444-3453 (1985).

1983 (1)

1931 (1)

P. van Cittert, “Zum einfluss der spaltbreite auf die intesitatsveteilung in spektallinien,” Z. Phys. 69, 298-308 (1931).
[CrossRef]

A. Jones, D. B.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Abedin, N.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

Afrailov, M.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Alkhaled, A.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Ambrico, P.

Amini, A.

Amodeo, A.

Andreev, I.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Atlas, R. M.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Bai, Y.

Baranov, A.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Boesch, H.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Breon, F.-M.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Brown, L. R.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Burrows, J. P.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Campbell, J.

J. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, Vol. 22 of Lightwave Communications Technology, Part D, Photodetectors, R.Willardson and A.Beer, eds. (Academic, 1985), Chap. 5.

Chen, S.

Chudasama, B.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Ciais, P.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Connor, B. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Cox, J.

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

Cox, J. A.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Crisp, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Datta, S.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Daugherty, K.

K. Daugherty, Analog-to-Digital Conversion, A Practical Approach (McGraw-Hill, 1995), Chap. 9.

De Young, R.

T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).

DeCola, P. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Denning, A. S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Doney, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Dreischuh, T.

Durieux, E.

L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).

Eloranta, E.

Fiorani, L.

L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).

Fung, I. Y.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Gao, J.

J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).

Gieck, K.

K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

Gieck, R.

K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

Girolamo, P.

Gurdev, L.

Hamazaki, T.

T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).

Ismail, S.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

Jacob, D. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Kaiser, J.

J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998).
[CrossRef]

Kavaya, M.

Kavaya, M. J.

Kenyon, D.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Kolarov, G.

D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).

Kondo, K.

T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).

Kovalev, V.

Kuang, Z.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Kuze, A.

T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).

Law, R. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Li, J.

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

Li, J. V.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Lohokare, S.

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

Luck, W.

T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).

Mack, T.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

Matthews, G.

Mauk, M.

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

Mauk, M. G.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Mayor, S.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

S. Spuler and S. Mayor, “Raman shifter optimized for lidar at a 1.5 micron wavelength,” Appl. Opt. 46, 2990-2995 (2007).
[CrossRef]

S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005).
[CrossRef]

S. Mayor and S. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
[CrossRef]

Menzies, R.

Michalak, A. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Mikhailova, M.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Miller, C. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Mirsagatov, M.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Modlin, E. A.

Nachtigal, C.

C. Nachtigal, Instrumentation and Control, Fundamentals and Applications (Wiley, 1990), Chap. 2.

Ng, C.

J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).

Nicholls, M. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

O'Brien, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Olsen, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Pawson, S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Petros, M.

Petzar, P. J.

Pollock, R.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Rafol, S. B.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Rand, J.

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

Randerson, J. T.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Rayner, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Refaat, T.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).

Riad, S.

S. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

Roesler, F.

Salawitch, R. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Sander, S. P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Schmidt, K.

J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998).
[CrossRef]

Schroll, S.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Sen, B.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Shellenbarger, Z. A.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Shipley, S.

Sims, P. E.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Singh, U.

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

Singh, U. N.

Spinelli, N.

Sprague, G.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Spuler, S.

S. Spuler and S. Mayor, “Raman shifter optimized for lidar at a 1.5 micron wavelength,” Appl. Opt. 46, 2990-2995 (2007).
[CrossRef]

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005).
[CrossRef]

S. Mayor and S. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
[CrossRef]

Sroga, J.

Stephens, G. L.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Stoyanov, D.

Sulima, O.

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

Sulima, O. V.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

Suntharalingam, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Tans, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Tans, P. P.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Toon, G. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Tracy, D.

Trauger, J.

Trieu, B. C.

van Cittert, P.

P. van Cittert, “Zum einfluss der spaltbreite auf die intesitatsveteilung in spektallinien,” Z. Phys. 69, 298-308 (1931).
[CrossRef]

Vankov, O.

D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).

Weinman, J.

Weiss, B.

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Wennberg, P. O.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Wofsy, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Yakovlev, Y.

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Yu, J.

Yung, Y. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Adv. Space Res. (1)

D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. B (1)

J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).

Electron. Lett. (1)

O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004).
[CrossRef]

IEE Proc. Optoelectron. (1)

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).

IEEE Trans. Electron. Devices (1)

N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).

J. Atmos. Ocean. Technol. (1)

S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005).
[CrossRef]

J. Geophys. Res. (1)

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (3)

D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).

T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).

Opt. Laser Technol. (1)

L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).

Opt. Lett. (1)

Proc. IEEE (1)

S. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

Proc. SPIE (2)

T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).

T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).

Science (1)

J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).

Z. Phys. (1)

P. van Cittert, “Zum einfluss der spaltbreite auf die intesitatsveteilung in spektallinien,” Z. Phys. 69, 298-308 (1931).
[CrossRef]

Other (5)

K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).

J. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, Vol. 22 of Lightwave Communications Technology, Part D, Photodetectors, R.Willardson and A.Beer, eds. (Academic, 1985), Chap. 5.

K. Daugherty, Analog-to-Digital Conversion, A Practical Approach (McGraw-Hill, 1995), Chap. 9.

C. Nachtigal, Instrumentation and Control, Fundamentals and Applications (Wiley, 1990), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the lidar detection system that consists of the lidar detection channel (LDC) and the digitizer. The LDC is formed by the heterojunction phototransistor (HPT) or the detector and the detection circuit electronics. The electronics include transimpedance amplifier (TIA), summing amplifier (SA), and voltage amplifier.

Fig. 2
Fig. 2

(a) Variation of the voltage noise spectral density with frequency for LDC1 and LDC2 detection channels at the specified voltage amplifier gains. (b) Calculated effective noise current spectral density variation with frequency compared to the HPT1 and HPT2 phototransistors’ measured noise current spectral density.

Fig. 3
Fig. 3

(a) Schematic of the experimental setup used to measure the tested detection systems’ impulse response compared to the reference APD channel. (b) Measured impulse response functions for the detection channels (continuous curves) and the selected points (solid circles) for the fitting. The fitting functions are also plotted with bandwidth fitting parameters listed for the detection channels.

Fig. 4
Fig. 4

(a) Data of the boundary layer profiling obtained simultaneously by LDC1 and RLDC. The data were background and laser energy corrected and shot averaged by 3000 shots. The data clearly show the broadening effect of the LDC1 due to its slower response. (b) SNR calculation of the same data set and for the LDC1 after deconvolution. By correlating the SNR of (b) and the data of (a), the system NEP (marked extracted NEP, NEP ex in text) can be obtained and compared to the detector NEP and detection system effective NEP, NEP eff . (c) A zoom-in to the near-field, up to 7 km , to the processed data without the deconvolution and (d) with the deconvolution of both channels, using the IRF defined in Fig. 3b. Comparing (c) and (d), the broadening effect of LDC1 is recovered by the process. (e) The corresponding range corrected data before the deconvolution and (f) after the deconvolution. Comparing (e) and (f), the deconvolution process matches the boundary layer signals, where the original SNR was high, while increasing the far-field noise, as indicated by the grassy far-field between 5 and 7 km .

Fig. 5
Fig. 5

(a) Data of the boundary layer profiling obtained simultaneously by LDC2 and RLDC. The data were background and laser energy corrected and shot averaged by 3000 shots. The data clearly show the slight broadening of the LDC2 due to its relatively faster response. (b) SNR calculation of the same data set and for the LDC2 after deconvolution. SNR indicates a performance deterioration of LDC2 compared to LDC1 before the deconvolution (see Fig. 4). By correlating the SNR of (b) and the data of (a), the system NEP ( N E P e x in text) can be obtained and compared to the detector NEP and detection system effective NEP, N E P e f f . (c) A zoom-in to the near-field, up to 7 km , to the processed data without the deconvolution and (d) with the deconvolution of both channels, using the IRF defined in Fig. 3b. Comparing (c) and (d), the slight modification to the profile was obtained by the process. (e) The corresponding range corrected data before the deconvolution and (f) after the deconvolution. Comparing (e) and (f), the deconvolution process match the boundary layer signals, but with higher noise, as indicated by the grassy profile in the far field.

Fig. 6
Fig. 6

False color history diagrams of the far-field temporal variation of the return signal before deconvolution (a) for the LDC1 detection channel and (b) for the RLDC reference detection channel. The same diagrams are repeated for (c) LDC1 and (d) RLDC after the deconvolution process. The vertical white line selects a sample record shown in (e) and (f), which mark some resolved peaks, down to 60 m , after the deconvolution. A good match between the two channels is a result of the higher NEP setting of HPT1. This led to artificially adding a marker on the LDC1 channel by temporary blocking the signal as indicated by the bold white arrows on the channel diagrams.

Fig. 7
Fig. 7

False color history diagrams of the far-field temporal variation of the return signal before deconvolution (a) for the LDC2 detection channel and (b) for the RLDC reference detection channel. The same diagrams are repeated for (c) LDC2 and (d) RLDC after the deconvolution process. The vertical white line selects a sample record shown in (e) and (f), which mark some resolved peaks, down to 60 m , after the deconvolution. LDC2 shows an increase in the background noise due to the lower NEP setting of the HPT2.

Tables (3)

Tables Icon

Table 1 Raman-Shifted Eye-Safe Aerosol Lidar InGaAs Avalanche Photodiode and Heterojunction Phototransistor Parameters at 1.5 μm

Tables Icon

Table 2 Detection Channel Parameters, Using 50     MS / s , 14 - Bit , ± 1 V p p Digitizer a .

Tables Icon

Table 3 Comparison Between the Extracted Noise-Equivalent Power (NEP), Obtained from Lidar Data, the Effective NEP, Obtained from the Detection Systems, and the Detector NEP, Obtained Before Deconvolution

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

G e = G I G V ,
G ch = 0.5 · R · A · G e ,
G d = 0.5 · R · A · G I · G V · 2 N / V p p ,
O p ( t ) = a · e b · t ,
ln { O p ( t ) } = ln { a } b · t ,
NEP ex = ( A / G d · BW ) · S | S N R = 1 ,
h ( t ) = f ( t ) * g ( t ) ,
H ( s ) = F ( s ) · G ( s ) ,
f sf = f sh / M h = f sg / M g ,
k 1 = g * f n .
k 2 = h k 1.
k 3 = f n + k 2.
f n + 1 = k 3.
f n + 1 = f n + ( h g * f n ) .
F n = H + ( 1 G ) · F n 1 ,
| 1 G | < 1 ,
F n = H · i = 0 n ( 1 G ) i = [ 1 ( 1 G ) n + 1 ] · H / G ,
F n = H · i = 0 ( 1 G ) i = H / G ,

Metrics