Abstract

We have investigated the influence of laser beam size on laser-induced damage threshold (LIDT) in the case of single- and multiple-shot irradiation. The study was performed on hafnia thin films deposited with various technologies (evaporation, sputtering, with or without ion assistance). LIDT measurements were carried out at 1064nm and 12ns with a spot size ranging from a few tens to a few hundreds of micrometers, in 1-on-1 and R-on-1 modes. These measurements were compared with simulations obtained with the statistical theory of laser-induced damage caused by initiating inclusions.

We show how to obtain information on the initiating defect properties and the related physical damage mechanisms with a multiscale study. Under certain conditions, it is possible with this method to discriminate different defects, estimate their densities, and follow the evolution of the defects under multiple irradiation. The different metrology implications of our approach, particularly for obtaining a functional LIDT of optical components are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription