Abstract

We have investigated the influence of laser beam size on laser-induced damage threshold (LIDT) in the case of single- and multiple-shot irradiation. The study was performed on hafnia thin films deposited with various technologies (evaporation, sputtering, with or without ion assistance). LIDT measurements were carried out at 1064nm and 12ns with a spot size ranging from a few tens to a few hundreds of micrometers, in 1-on-1 and R-on-1 modes. These measurements were compared with simulations obtained with the statistical theory of laser-induced damage caused by initiating inclusions.

We show how to obtain information on the initiating defect properties and the related physical damage mechanisms with a multiscale study. Under certain conditions, it is possible with this method to discriminate different defects, estimate their densities, and follow the evolution of the defects under multiple irradiation. The different metrology implications of our approach, particularly for obtaining a functional LIDT of optical components are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
    [CrossRef]
  2. N. Bloembergen, “Roles of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).
  3. M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).
  4. J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).
  5. R. H. Picard, D. Milam, and A. Bradbury, “Statistical analysis of defect-caused laser damage in thin films,” Appl. Opt. 16, 1563-1571, (1977).
  6. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defects ensembles,” Appl. Opt. 23, 3796-3805 (1984).
  7. R. M. O'Connell, “Onset threshold analysis of defect-driven surface and bulk laser damage,” Appl. Opt. 31, 4143-4153, (1992).
  8. J. W. Arenberg, “Extrapolation of the probability of survival of a large area optic based on a small sample,” Proc. SPIE 4347, 336-342 (2001).
  9. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin films and liquid forms,” Appl. Opt. 41, 3156-3166 (2002).
    [CrossRef]
  10. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10, 1465-1474 (2002).
  11. H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
  12. L. Gallais, J. Capoulade, J. Y. Natoli, M. Commandé, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107-C113 (2008).
    [CrossRef]
  13. ISO standard 11254-1, “Determination of laser-damage threshold of optical surfaces--part 1: 1-on-1 test” (2000).
  14. A. Hildenbrand, F. Wagner, H. Akhouayri, J. Y. Natoli, and M. Commandé, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
  15. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
  16. P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
    [CrossRef]
  17. L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).
  18. E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).
  19. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
    [CrossRef]
  20. S. R. Foltyn, “Spot size effects in laser damage testing,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 368-377 (1982).
  21. H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” Proc. SPIE 3902, 339-346 (2000).
  22. B. Bertussi, J. Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227-231 (2004).
  23. H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
  24. L. Gallais and J. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960-971 (2003).
    [CrossRef]
  25. Here, we have considered a square surface of 17.6 mm each side, which is close to the entire surface available on our sample.
  26. M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).
  27. S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
    [CrossRef]
  28. M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
    [CrossRef]
  29. J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
    [CrossRef]
  30. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser conditionning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35, 5613-5619 (1996).
  31. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).
  32. A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, “Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,” Opt. Express 11, 2497-2501, (2003).
  33. Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
    [CrossRef]

2008 (2)

2007 (2)

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

2005 (2)

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).

2004 (2)

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

B. Bertussi, J. Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227-231 (2004).

2003 (2)

2002 (2)

2001 (2)

J. W. Arenberg, “Extrapolation of the probability of survival of a large area optic based on a small sample,” Proc. SPIE 4347, 336-342 (2001).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

2000 (2)

H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” Proc. SPIE 3902, 339-346 (2000).

ISO standard 11254-1, “Determination of laser-damage threshold of optical surfaces--part 1: 1-on-1 test” (2000).

1997 (2)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).

J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).

1996 (1)

1994 (1)

M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

1992 (1)

1990 (1)

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

1987 (1)

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

1984 (2)

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defects ensembles,” Appl. Opt. 23, 3796-3805 (1984).

1982 (3)

S. R. Foltyn, “Spot size effects in laser damage testing,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 368-377 (1982).

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
[CrossRef]

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

1980 (1)

E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).

1977 (1)

1973 (2)

D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
[CrossRef]

N. Bloembergen, “Roles of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).

Akhouayri, H.

A. Hildenbrand, F. Wagner, H. Akhouayri, J. Y. Natoli, and M. Commandé, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).

J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin films and liquid forms,” Appl. Opt. 41, 3156-3166 (2002).
[CrossRef]

Allen, S. D.

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
[CrossRef]

Amra, C.

Anton, B.

Arenberg, A. W.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

Arenberg, J. W.

J. W. Arenberg, “Extrapolation of the probability of survival of a large area optic based on a small sample,” Proc. SPIE 4347, 336-342 (2001).

Babb, M. T.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

Bass, M.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
[CrossRef]

Bercegol, H.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, “Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,” Opt. Express 11, 2497-2501, (2003).

H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” Proc. SPIE 3902, 339-346 (2000).

Bertussi, B.

Bloembergen, N.

Bouchut, P.

Bouillet, S.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

Bradbury, A.

Bradbury, R.

D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
[CrossRef]

Campbell, J. H.

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

Capoulade, J.

Carr, C. W.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

Cathelinaud, M.

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).

Chow, R.

M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

Commandé, M.

Commandre, M.

Commandré, M.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).

B. Bertussi, J. Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227-231 (2004).

Corchinoux, R.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

DeMange, P.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

Demos, S. G.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

Desrumaux, C.

J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).

Dijon, J.

J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).

Donval, T.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

During, A.

Eva, E.

Faith, W. N.

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
[CrossRef]

Fan, Z.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

Foltyn, S. R.

S. R. Foltyn, “Spot size effects in laser damage testing,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 368-377 (1982).

Fossati, C.

Frink, M. E.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

Gallais, L.

Grèzes-Besset, C.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).

Hacker, E.

Henking, R.

Hildenbrand, A.

A. Hildenbrand, F. Wagner, H. Akhouayri, J. Y. Natoli, and M. Commandé, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).

Hue, J.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Jennings, R. T.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Josse, M.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

Kaiser, N.

Kennedy, G. C.

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

Koc, C.

Koumvakalis, N.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

Krol, H.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).

Lagier, G.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

Lamaigère, L.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

Lequime, M.

Mademann, D.

Mann, K.

Maricle, S. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Merkle, L. D.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

Milam, D.

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

R. H. Picard, D. Milam, and A. Bradbury, “Statistical analysis of defect-caused laser damage in thin films,” Appl. Opt. 16, 1563-1571, (1977).

D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
[CrossRef]

Mordaunt, D. W.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

Natoli, J.

Natoli, J. Y.

O'Connell, R. M.

Picard, R. H.

Poiroux, T.

J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).

Poncetta, J.-C.

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

Porteus, J. O.

J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defects ensembles,” Appl. Opt. 23, 3796-3805 (1984).

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
[CrossRef]

Radousky, H. B.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

Raupach, L.

Ristau, D.

Rullier, J. L.

Schwartz, S.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Seitel, S. C.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defects ensembles,” Appl. Opt. 23, 3796-3805 (1984).

Shao, J.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).

Soileau, M. J.

E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).

Staggs, M. C.

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

Stokowski, S.

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

Stolz, C. J.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

Swain, J. E.

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

Teppo, E. A.

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

Torricini, D.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

Van Stryland, E. W.

E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).

Wagner, F.

A. Hildenbrand, F. Wagner, H. Akhouayri, J. Y. Natoli, and M. Commandé, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).

Wang, T.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

Weissbrodt, P.

Wolfe, C. R.

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

Zhang, D.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

Zhao, Y.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (4)

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416-418 (1982).
[CrossRef]

M. E. Frink, A. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of anti-reflection coated glasses,” Appl. Phys. Lett. 51, 415-417 (1987).
[CrossRef]

J. E. Swain, S. Stokowski, D. Milam, and G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12-14 (1982).
[CrossRef]

D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions,” Appl. Phys. Lett. 23, 654-657 (1973).
[CrossRef]

Appl. Surf. Sci. (1)

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335-339 (2005).
[CrossRef]

J. Appl. Phys. (1)

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 ?m,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).

Natl. Bur. Stand. (U.S.) Spec. Publ. (2)

S. R. Foltyn, “Spot size effects in laser damage testing,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 368-377 (1982).

E. W. Van Stryland, M. J. Soileau, and A. L. Smirl, “Pulse-width and focal volume dependence of laser-induced breakdown,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 375-384 (1980).

Opt. Commun. (2)

B. Bertussi, J. Y. Natoli, and M. Commandré, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227-231 (2004).

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).

Opt. Eng. (1)

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).

Opt. Express (2)

Proc. SPIE (6)

M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

J. Dijon, T. Poiroux and C. Desrumaux, “Nano absorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315-325 (1997).

J. W. Arenberg, “Extrapolation of the probability of survival of a large area optic based on a small sample,” Proc. SPIE 4347, 336-342 (2001).

H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” Proc. SPIE 3902, 339-346 (2000).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 4347, 336-342 (2001).

M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” Proc. SPIE 1438, 376-390 (1990).

Rev. Sci. Instrum. (2)

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 ( (2004).
[CrossRef]

L. Lamaigère, S. Bouillet, R. Corchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103-105, (2007).

Other (3)

ISO standard 11254-1, “Determination of laser-damage threshold of optical surfaces--part 1: 1-on-1 test” (2000).

A. Hildenbrand, F. Wagner, H. Akhouayri, J. Y. Natoli, and M. Commandé, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).

Here, we have considered a square surface of 17.6 mm each side, which is close to the entire surface available on our sample.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic setup of the laser damage test facility: ω dam , Nd:YAG laser at 1064 nm ; ω probe , He–Ne laser; Pyr, pyrometer for pulse energy measurement; L, lens for beam focusing; Ech, sample.

Fig. 2
Fig. 2

(a) Defect class ensemble Ω 0 with the following parameters: T 0 = 35 J / cm 2 , Δ T 0 = 1 J / cm 2 , d 0 = 10 3 / mm 2 . (b) Simulation of the associated laser damage probability curve (spot size diameter 50 μm ). (c) Simulation of laser damage probability curves for different spot size diameters. 1, 10 μm ; 2, 15 μm ; 3, 20 μm ; 4, 30 μm ; 5, 50 μm ; 6, 500 μm .

Fig. 3
Fig. 3

(a) Two defect class ensembles Ω 1 and Ω 2 with the following parameters: T 1 = 35 J / cm 2 , Δ T 1 = 1 J / cm 2 , d 1 = 10 3 / mm 2 , T 2 = 17 J / cm 2 , Δ T 2 = 1 J / cm 2 , d 2 = 10 / mm 2 . (b) Simulation of the associated laser damage probability curve (spot size diameter 100 μm ). The two damage probability curves corresponding separately to precursors Ω 1 and precursors Ω 2 are also plotted (dashed curves). (c) Simulation of laser damage probability curves for different spot size diameters. 1, 15 μm ; 2, 35 μm ; 3, 100 μm ; 4, 150 μm ; 5, 250 μm ; 6; 600 μm .

Fig. 4
Fig. 4

Laser damage probability measured in 1-on-1 mode (at 1064 nm and 12 ns ), and the associated defect ensembles (superimposed on each data plot), for hafnia films made with different technologies: electron beam deposition, starting from a (a) hafnia or (b) hafnium source, (c) reactive low-voltage ion plating, and (d) dual ion beam sputtering. The fits of the experimental data (solid curves) are described in detail in the text.

Fig. 5
Fig. 5

Influence of (a) a variation of ± 10 % of the defect density on the laser damage probability curve and (b) a variation of ± 10 % of the threshold mean value of the defects.

Fig. 6
Fig. 6

Comparison of results obtained in 1-on-1 and R-on-1 modes on samples (a), (b) EBD - HfO 2 and (c), (d) RLVIP for two spot sizes. The fitting parameters for the 1-on-1 curves are identical to those in Fig. 4. For the sake of clarity, the errors bars of the R-on-1 curves are not given for each point.

Fig. 7
Fig. 7

Comparison of results obtained with the R-on-1 mode, on samples (a) EBD - HfO 2 and (b) RLVIP, for two spot sizes. For clarity, the errors bars of the R-on-1 curves are not given for every point.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( F ) = 1 exp [ N ( F ) ] ,
N ( F ) = 0 F g ( T ) S T ( F ) d T .
S T ( F ) = π w 2 2 ln ( F T )
g ( T ) = 2 d 0 Δ T 0 2 π exp [ 1 2 ( T T 0 Δ T 0 / 2 ) 2 ] ,
0 g ( T ) d T = d 0 .
g ( T ) = i = 1 n g i ( T ) ,
g ( T ) = i = 1 n 2 d i Δ T i 2 π exp [ 1 2 ( T T i Δ T i / 2 ) 2 ] .
ξ ( sample / spot size ) = N def N test ,

Metrics