Abstract

This paper examines evidence for the hypothesized connection between solar thermal properties of butterfly and moth (Lepidoptera) wings, iridescence/structural color, and thermoregulation. Specimens of 64 species of Lepidoptera were measured spectrophotometrically, their solar absorptances calculated, and their habitat temperatures determined. No correlation was found between habitat temperature and the solar absorptance of the wings. It was found, however, that the iridescent specimens exhibited, on average, substantially higher solar absorptance than noniridescent ones.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
    [CrossRef]
  2. H. Ghiradella, “Hairs, bristles, and scales,” in Insecta, Vol. 11a of Microscopic Anatomy of Invertebrates, F. W. Harrison and M. Locke, eds. (Wiley, 1998), Chap. 11, pp. 257-287.
  3. P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).
  4. I. N. Miaoulis and B. Heilman, “Butterfly thin-films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122-127 (1998).
  5. S. Berthier, “Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: a remarkable example of temperature auto-regulation.” Appl. Phys. A 80, 1397-1400(2005).
    [CrossRef]
  6. L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
    [CrossRef]
  7. D. W. Koon and A. B. Crawford, “Insect thin films as sun blocks, not solar collectors,” Appl. Opt. 39, 2496-2498 (2000).
    [CrossRef]
  8. “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” ASTM G173-03e1 (ASTM International, 2003).
  9. “Glass in building--determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors,” ISO 9050:2003(E) (International Organisation for Standardization, 2003).
  10. W. B. Watt, “Adaptive significance of pigment polymorphism in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation.” Evolution 22, 437-458 (1968).
    [CrossRef]
  11. R. Hoare, “World Climate: Weather Rainfall and Temperature Data,” Buttle and Tuttle, Ltd. Site accessed Nov. 2006-August 2007. Site created 1 Aug. 1996. Last updated 5 January, 2005, http://www.worldclimate.com/.
  12. Canty and Associates LLC,, “Weatherbase,” site accessed Nov. 2006-August 2007, data last updated 2005, http://www.weatherbase.com/.
  13. “The Weather Underground,” site accessed Nov. 2006-Aug. 2007, http://www.wunderground.com/.
  14. G. Guyot, Physics of the Environment and Climate, English language edition. (Wiley, 1998), Chap. 4.
  15. L. T. Wasserthal, “The rôle of butterfly wings in regulation of body temperature.” J. Insect Physiol. 21, 1921-1930(1975).
    [CrossRef]

2005 (1)

S. Berthier, “Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: a remarkable example of temperature auto-regulation.” Appl. Phys. A 80, 1397-1400(2005).
[CrossRef]

2003 (3)

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

“Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” ASTM G173-03e1 (ASTM International, 2003).

“Glass in building--determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors,” ISO 9050:2003(E) (International Organisation for Standardization, 2003).

2000 (2)

D. W. Koon and A. B. Crawford, “Insect thin films as sun blocks, not solar collectors,” Appl. Opt. 39, 2496-2498 (2000).
[CrossRef]

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).

1998 (4)

I. N. Miaoulis and B. Heilman, “Butterfly thin-films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122-127 (1998).

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

H. Ghiradella, “Hairs, bristles, and scales,” in Insecta, Vol. 11a of Microscopic Anatomy of Invertebrates, F. W. Harrison and M. Locke, eds. (Wiley, 1998), Chap. 11, pp. 257-287.

G. Guyot, Physics of the Environment and Climate, English language edition. (Wiley, 1998), Chap. 4.

1975 (1)

L. T. Wasserthal, “The rôle of butterfly wings in regulation of body temperature.” J. Insect Physiol. 21, 1921-1930(1975).
[CrossRef]

1968 (1)

W. B. Watt, “Adaptive significance of pigment polymorphism in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation.” Evolution 22, 437-458 (1968).
[CrossRef]

Balázs, J.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Bálint, Zs.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Berthier, S.

S. Berthier, “Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: a remarkable example of temperature auto-regulation.” Appl. Phys. A 80, 1397-1400(2005).
[CrossRef]

Biró, L. P.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Bläsi, B.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Crawford, A. B.

Ghiradella, H.

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).

H. Ghiradella, “Hairs, bristles, and scales,” in Insecta, Vol. 11a of Microscopic Anatomy of Invertebrates, F. W. Harrison and M. Locke, eds. (Wiley, 1998), Chap. 11, pp. 257-287.

Gombert, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Guyot, G.

G. Guyot, Physics of the Environment and Climate, English language edition. (Wiley, 1998), Chap. 4.

Heilman, B.

I. N. Miaoulis and B. Heilman, “Butterfly thin-films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122-127 (1998).

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Hoare, R.

R. Hoare, “World Climate: Weather Rainfall and Temperature Data,” Buttle and Tuttle, Ltd. Site accessed Nov. 2006-August 2007. Site created 1 Aug. 1996. Last updated 5 January, 2005, http://www.worldclimate.com/.

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Horváth, Z. E.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Kertész, K.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Kiricsi, I.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Koon, D. W.

Lousse, V.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Márk, G. I.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Méhn, D.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Miaoulis, I. N.

I. N. Miaoulis and B. Heilman, “Butterfly thin-films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122-127 (1998).

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).

Vértesy, Z.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Vigneron, J.-P.

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Vukusic, P.

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).

Wasserthal, L. T.

L. T. Wasserthal, “The rôle of butterfly wings in regulation of body temperature.” J. Insect Physiol. 21, 1921-1930(1975).
[CrossRef]

Watt, W. B.

W. B. Watt, “Adaptive significance of pigment polymorphism in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation.” Evolution 22, 437-458 (1968).
[CrossRef]

Wittwer, V.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Ann. Entomol. Soc. Am. (1)

I. N. Miaoulis and B. Heilman, “Butterfly thin-films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122-127 (1998).

Appl. Opt. (1)

Appl. Phys. A (1)

S. Berthier, “Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: a remarkable example of temperature auto-regulation.” Appl. Phys. A 80, 1397-1400(2005).
[CrossRef]

Evolution (1)

W. B. Watt, “Adaptive significance of pigment polymorphism in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation.” Evolution 22, 437-458 (1968).
[CrossRef]

J. Insect Physiol. (1)

L. T. Wasserthal, “The rôle of butterfly wings in regulation of body temperature.” J. Insect Physiol. 21, 1921-1930(1975).
[CrossRef]

Photonics Sci. News (1)

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructures in butterfly wing-scales,” Photonics Sci. News 6, 61-66 (2000).

Phys. Rev. E (1)

L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Solar Energy Mater. Sol. Cells (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Sol. Cells 54, 333-342 (1998).
[CrossRef]

Other (7)

H. Ghiradella, “Hairs, bristles, and scales,” in Insecta, Vol. 11a of Microscopic Anatomy of Invertebrates, F. W. Harrison and M. Locke, eds. (Wiley, 1998), Chap. 11, pp. 257-287.

R. Hoare, “World Climate: Weather Rainfall and Temperature Data,” Buttle and Tuttle, Ltd. Site accessed Nov. 2006-August 2007. Site created 1 Aug. 1996. Last updated 5 January, 2005, http://www.worldclimate.com/.

Canty and Associates LLC,, “Weatherbase,” site accessed Nov. 2006-August 2007, data last updated 2005, http://www.weatherbase.com/.

“The Weather Underground,” site accessed Nov. 2006-Aug. 2007, http://www.wunderground.com/.

G. Guyot, Physics of the Environment and Climate, English language edition. (Wiley, 1998), Chap. 4.

“Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” ASTM G173-03e1 (ASTM International, 2003).

“Glass in building--determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors,” ISO 9050:2003(E) (International Organisation for Standardization, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Frequency plot of solar absorptances of all 64 specimens in 20 data bins.

Fig. 2
Fig. 2

Solar absorptance of basal region of specimen wings versus altitude corrected habitat temperature for month of capture for the 45 specimens for which reliable climatic data were available. See text for discussion of sources of error. The large gray and white circles represent the mean coordinates for the iridescent and noniridescent specimens, respectively. The eight points plotted with diamonds were measured using a different protocol from the rest.

Fig. 3
Fig. 3

Approximate location of light beam in spectroscopic measurements.

Fig. 4
Fig. 4

Reflectance in the UV-Vis-NIR region: (a) iridescent specimens, (b) noniridescent specimens. Anomalies at 850 nm are due to detector changeover. The outlier in (a), which is highly reflecting around 800 nm , is Anteos clorinde, which is iridescent in the UV but not the visible.

Fig. 5
Fig. 5

Absorptivity in the thermal IR region of the spectrum for 12 specimens. The three noniridescent specimens are plotted with heavier lines than the iridescent ones. The wavelengths of all spectral features are consistent in all plots and so are probably purely compositional.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = α s ε h σ T 4 / I ,
ε ( θ , ϕ , λ ) = α ( θ , ϕ , λ ) .

Metrics