Abstract

A simple strategy for increasing the collection efficiency of surface plasmon-coupled emission (SPCE) is demonstrated. SPCE is a near-field phenomenon occurring when excited fluorophores are in close proximity to a subwavelength metal film. The energy of the fluorophores induces surface plasmons that radiate the coupled energy at highly specific angles. In an attempt to maximize the collected emission, a conical mirror was placed around the coupling prism. The result was a nearly 500 fold enhancement over the free space signal as detected from a single point from a poly(vinyl alcohol) layer doped with ruthenium. Coupling this large enhancement with LED excitation could lead to the development of inexpensive, handheld fluorescent devices with high sensitivity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
    [CrossRef]
  2. X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
    [CrossRef]
  3. A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).
  4. X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
    [CrossRef]
  5. A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003).
    [CrossRef]
  6. C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
    [CrossRef]
  7. L. J. Kricka, “Stains, labels and detection strategies for nucleic acids assays,” Ann. Clin. Biochem. 39, 114-129 (2002).
  8. F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
    [CrossRef]
  9. G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
    [CrossRef]
  10. X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
    [CrossRef]
  11. E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
    [CrossRef]
  12. L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
    [CrossRef]
  13. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
    [CrossRef]
  14. J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
    [CrossRef]
  15. K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
    [CrossRef]
  16. J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
    [CrossRef]
  17. B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).
  18. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
    [CrossRef]
  19. E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
    [CrossRef]
  20. S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).
  21. J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
    [CrossRef]
  22. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
    [CrossRef]
  23. C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).
  24. N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).
  25. K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
    [CrossRef]
  26. J. R. Lakowicz, “Radiative decay engineering. 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
    [CrossRef]
  27. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
    [CrossRef]
  28. J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
    [CrossRef]
  29. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  30. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
    [CrossRef]
  31. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
    [CrossRef]
  32. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
    [CrossRef]
  33. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004).
    [CrossRef]
  34. S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
    [CrossRef]
  35. J. Enderlein, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005).
    [CrossRef]
  36. D. Rachlin, “Optimized approach for microarray screening,” Proc. SPIE 4632, 13-26 (2002).
  37. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
  38. D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
    [CrossRef]
  39. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
    [CrossRef]
  40. J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000).
  41. D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
    [CrossRef]
  42. H. Raether, “Physics of thin films,” Advances in Research and Development (Academic, 1977), Vol. 9.
  43. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
    [CrossRef]
  44. K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
    [CrossRef]
  45. F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
    [CrossRef]

2007 (3)

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
[CrossRef]

2006 (3)

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

2005 (6)

X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

J. R. Lakowicz, “Radiative decay engineering. 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef]

J. Enderlein, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

2004 (12)

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
[CrossRef]

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004).
[CrossRef]

S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
[CrossRef]

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

2003 (7)

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003).
[CrossRef]

C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
[CrossRef]

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
[CrossRef]

2002 (3)

D. Rachlin, “Optimized approach for microarray screening,” Proc. SPIE 4632, 13-26 (2002).

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

L. J. Kricka, “Stains, labels and detection strategies for nucleic acids assays,” Ann. Clin. Biochem. 39, 114-129 (2002).

2001 (2)

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

2000 (3)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000).

E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
[CrossRef]

1998 (2)

K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
[CrossRef]

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

1993 (1)

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

1983 (1)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

Ali, F. M.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Ao, L.

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

Aslan, K.

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

Aussenegg, F. R.

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Barnett, A.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

Bauer, G.

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

Bentley, W. E.

C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
[CrossRef]

Bocchio, N.

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

Brorson, K. A.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

Brunner, H.

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Calander, N.

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004).
[CrossRef]

Castellano, F. N.

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

Chin, K. C.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Chlagenhaufen, T.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Chumanov, G.

K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
[CrossRef]

Cotton, T.

K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
[CrossRef]

Cui, D.

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

Dauria, S.

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Dunn, B.

E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
[CrossRef]

Ekgasit, S.

S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
[CrossRef]

Ellington, A. D.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Enderlein, J.

J. Enderlein, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005).
[CrossRef]

J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000).

Fang, J.

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Frey, D. D.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

Funabashi, H.

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

Gandhum, A.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

Gao, F.

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

Garoff, S.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Ge, X.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

Geddes, C. D.

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

Gerber, S.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Gersten, J. I.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Goodey, A. P.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Gryczynski, I.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
[CrossRef]

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Gryczynski, Z.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Guo, X. Q.

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

Gupta, A.

A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003).
[CrossRef]

Hanson, M.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

He, R.

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

Hohenester, U.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Jamil, M. F.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Kirby, R.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Knoll, W.

S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
[CrossRef]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
[CrossRef]

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

Kobatake, E.

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

Kostov, Y.

D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
[CrossRef]

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Kreiter, M.

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
[CrossRef]

Krenn, J. R.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Kricka, L. J.

L. J. Kricka, “Stains, labels and detection strategies for nucleic acids assays,” Ann. Clin. Biochem. 39, 114-129 (2002).

Kummerlen, J.

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Lakowicz, J. R.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef]

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
[CrossRef]

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

Lan, E. H.

E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
[CrossRef]

Leitner, A.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Leonenko, Z.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

Li, L.

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

Lofas, S.

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

Lu, C.

C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
[CrossRef]

Malicka, J.

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
[CrossRef]

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Maliwal, B. P.

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

Matushin, V.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

Matveeva, E.

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

Matveeva, E. G.

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

Mayer, C.

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

McDevitt, J. T.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Mie, M.

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

Moreira, A. R.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

Neikirk, D. P.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Nitzan, A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Nowaczyk, K.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

Pan, B.

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

Persson, S.

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

Rachlin, D.

D. Rachlin, “Optimized approach for microarray screening,” Proc. SPIE 4632, 13-26 (2002).

Raether, H.

H. Raether, “Physics of thin films,” Advances in Research and Development (Academic, 1977), Vol. 9.

Rao, G.

D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
[CrossRef]

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003).
[CrossRef]

C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
[CrossRef]

Reil, F.

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Rodriguez, M. D.

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

Schalkhammer, T.

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

Shen, H.

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

Shuler, M. L.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Simpson, J.

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

Sin, A.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Smith, D.

D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
[CrossRef]

Smith, D. S.

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

Sokolov, K.

K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
[CrossRef]

Stefani, D.

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

Stich, N.

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

Stoyanova, N.

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

Szmacinski, H.

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

Tanaka, G.

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

Thammachreon, C.

S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
[CrossRef]

Tolosa, L.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

Vasilev, K.

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
[CrossRef]

Weitz, D. A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Wokaun, A.

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Yu, F.

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

Zink, J. I.

E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
[CrossRef]

Anal. Biochem. (8)

G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002).
[CrossRef]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003).
[CrossRef]

E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering. 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef]

Anal. Chem. (7)

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004).
[CrossRef]

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004).
[CrossRef]

S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004).
[CrossRef]

L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006).
[CrossRef]

F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003).
[CrossRef]

K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998).
[CrossRef]

X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998).
[CrossRef]

Ann. Clin. Biochem. (1)

L. J. Kricka, “Stains, labels and detection strategies for nucleic acids assays,” Ann. Clin. Biochem. 39, 114-129 (2002).

Biochem. Biophys. Res. Commun. (1)

J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003).
[CrossRef]

Biophys. J. (1)

J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000).

Biopolymers (Biospectroscopy) (1)

B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).

Biotechnol. Bioeng. (4)

X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005).
[CrossRef]

X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003).
[CrossRef]

A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003).
[CrossRef]

C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003).
[CrossRef]

Biotechnol. Prog. (2)

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).

Chem. Mater. (1)

E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000).
[CrossRef]

Colloids Surf. A (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

Fresenius J. Anal. Chem. (1)

C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).

J. Am. Chem. Soc. (1)

F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004).
[CrossRef]

J. Biotechnol. (1)

X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006).
[CrossRef]

J. Chem. Phys. (2)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004).
[CrossRef]

J. Fluoresc. (2)

D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005).
[CrossRef]

K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).

J. Phys. Chem. B (2)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Mol. Phys. (1)

J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).

Phys. Rev. Lett. (1)

D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005).
[CrossRef]

Proc. SPIE (1)

D. Rachlin, “Optimized approach for microarray screening,” Proc. SPIE 4632, 13-26 (2002).

Sens. Actuators B (1)

D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007).
[CrossRef]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978).
[CrossRef]

Other (1)

H. Raether, “Physics of thin films,” Advances in Research and Development (Academic, 1977), Vol. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the sample configuration. Reverse Kretschmann (rKR) excitation from a 405 nm laser was used to directly excite ruthenium molecules in the PVA layer. The resulting SPCE exited the hemispherical prism at 56.5 ° in the shape of a ring and was reflected by the conical mirror into a point that was observed with a liquid light guide fiber optic.

Fig. 2
Fig. 2

Images of the ruthenium SPCE taken with a screen positioned at different distances from the focal point. (a) SPCE ring as viewed at the mirror/emission reflection. (b) SPCE focused point as projected onto a screen of OD 2 . (c) SPCE ring as projected onto a screen of OD 2 . (d) Copy of Fig. 2c with the intensity enhanced for clarity.

Fig. 3
Fig. 3

(Top) Observed angular distribution of the SPCE from a 50 nm PVA layer doped with ruthenium. (Bottom) Calculated reflectance profile of the system shown in Fig. 1 for the emission wavelength of 600 nm .

Fig. 4
Fig. 4

Ruthenium emission spectra due to rKR excitation as observed from the free space, the SPCE angle, and the focused SPCE point. No smoothing was performed for any curves. The use of the conical mirror resulted in nearly a 500 fold signal enhancement, leading to almost a 35 fold increase in the signal-to-noise ratio as compared to the free space signal.

Metrics